首页> 美国卫生研究院文献>Bioengineering >Surface Engineered Iron Oxide Nanoparticles Generated by Inert Gas Condensation for Biomedical Applications
【2h】

Surface Engineered Iron Oxide Nanoparticles Generated by Inert Gas Condensation for Biomedical Applications

机译:通过惰性气体冷凝产生的表面工程氧化铁纳米颗粒用于生物医学应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Despite the lifesaving medical discoveries of the last century, there is still an urgent need to improve the curative rate and reduce mortality in many fatal diseases such as cancer. One of the main requirements is to find new ways to deliver therapeutics/drugs more efficiently and only to affected tissues/organs. An exciting new technology is nanomaterials which are being widely investigated as potential nanocarriers to achieve localized drug delivery that would improve therapy and reduce adverse drug side effects. Among all the nanocarriers, iron oxide nanoparticles (IONPs) are one of the most promising as, thanks to their paramagnetic/superparamagnetic properties, they can be easily modified with chemical and biological functions and can be visualized inside the body by magnetic resonance imaging (MRI), while delivering the targeted therapy. Therefore, iron oxide nanoparticles were produced here with a novel method and their properties for potential applications in both diagnostics and therapeutics were investigated. The novel method involves production of free standing IONPs by inert gas condensation via the Mantis NanoGen Trio physical vapor deposition system. The IONPs were first sputtered and deposited on plasma cleaned, polyethylene glycol (PEG) coated silicon wafers. Surface modification of the cleaned wafer with PEG enabled deposition of free-standing IONPs, as once produced, the soft-landed IONPs were suspended by dissolution of the PEG layer in water. Transmission electron microscopic (TEM) characterization revealed free standing, iron oxide nanoparticles with size < 20 nm within a polymer matrix. The nanoparticles were analyzed also by Atomic Force Microscope (AFM), Dynamic Light Scattering (DLS) and NanoSight Nanoparticle Tacking Analysis (NTA). Therefore, our work confirms that inert gas condensation by the Mantis NanoGen Trio physical vapor deposition sputtering at room temperature can be successfully used as a scalable, reproducible process to prepare free-standing IONPs. The PEG- IONPs produced in this work do not require further purification and thanks to their tunable narrow size distribution have potential to be a powerful tool for biomedical applications.
机译:尽管上世纪的救生医学发现,但仍有迫切需要提高患有癌症等许多致命疾病的治疗率和降低死亡率。主要要求之一是找到更有效地递送治疗药/药物的新方法,而且仅用于受影响的组织/器官。令人兴奋的新技术是纳米材料,其被广泛研究为潜在的纳米载体,以实现将改善治疗和减少不良药物副作用的局部药物递送。在所有纳米载体中,氧化铁纳米颗粒(IONP)是最有前途的,因为它们的顺磁性/超顺磁性,它们可以用化学和生物学功能容易地修改,并且可以通过磁共振成像(MRI)在体内可视化),同时提供有针对性的治疗。因此,研究了氧化铁纳米颗粒,并研究了一种新的方法,研究了它们在诊断和治疗剂中的潜在应用的性质。该新方法涉及通过椎骨纳米结族物理气相沉积系统惰性气体缩合产生自由静态IONP。首先将IONP溅射并沉积在血浆清洁,聚乙二醇(PEG)涂覆的硅晶片上。用PEG的清洁晶片的表面改性使得独立的离子剂沉积,如一旦生产,软落地的IONP通过PEG层在水中的溶解悬浮。透射电子显微镜(TEM)表征揭示了在聚合物基质中具有尺寸<20nm的自由静态,氧化铁纳米粒子。通过原子力显微镜(AFM),动态光散射(DLS)和纳米颗粒加粘分析(NTA)分析纳米颗粒。因此,我们的作品证实,在室温下螳螂纳米三重组物理气相沉积溅射的惰性气体凝结可以成功地用作制备自由静态IONP的可伸缩,可重复的方法。在这项工作中生产的PEG-IONP不需要进一步纯化,并且由于它们可调谐窄尺寸分布有可能成为生物医学应用的强大工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号