首页> 美国卫生研究院文献>Acta Pharmacologica Sinica >Targeting the cholinergic system in Parkinson’s disease
【2h】

Targeting the cholinergic system in Parkinson’s disease

机译:针对帕金森病的胆碱能系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Diagrams of the striatal motor control system in health and pathology. a Schematic showing the organizing principle of the motor control system in the brain. The activities of the direct and indirect pathways in the striatum are indicated by orange and blue ovals, respectively. Dopamine neurons (green) from the midbrain and striatal ChIs (purple) are also shown. In the healthy brain, action sequences are encoded in the cortex and thalamus, transferred to the striatum (gray arrow), and initiated immediately after a brief dopamine transient and acetylcholine release. Once the movement kicks off, the actions (movement icons) are sequentially performed in a dopamine-independent manner. A highly coordinated interplay of striatal circuitry governs the execution of action sequences, with the direct pathway (orange) facilitating the performance of the appropriate actions and the indirect pathway (blue) suppressing unwanted ones. The precise balance of activity between the two pathways is essential for the accurate performance of motion sequences (indicated by the merged area with similar brightness of each color). Once the movement is finished, the consequence of the motion is evaluated, and a feedback signal of prediction error is generated in both ChIs and dopamine neurons for Hebbian modification of the striatal circuitry. If the circuits involved in the motion generate positive consequences for survival, they are enhanced (through the formation of synaptic LTP) to make them easier to recruit in the future. In the opposite scenario, if the behavioral consequences are worse than expected, the responsible circuit will be undermined (through the formation of synaptic LTD) and will be harder to activate thereafter. This functional feedback loop underlies the basis of motor learning in the striatum, where ChIs and dopamine neurons play essential roles in both the action initiation and result evaluation phases. b In parkinsonian conditions, dopamine neurons are lost. Falling dopamine levels in the striatum generate aberrant homeostatic adaptations in striatal neurons and synaptic plasticity in the striatal circuitry. ChIs become hyperactive and fire more synchronously. MSNs undergo homeostatic changes trying to restore the balance over time. The intrinsic excitability of MSNs of the direct pathway increased due to long-term loss of D1 activation, and the excitability of MSNs of the indirect pathway decreased due to loss of D2 activation. The bidirectional synaptic plasticity at cortical striatal synapses is the key cellular basis for motor learning and movement control. Nevertheless, since there is not enough dopamine left in PD, no LTP can form in the direct pathway while no LTD can form in the indirect pathway; this aberrantly suppresses the direct pathway (illustrated as the lighter orange oval) but artificially reinforces the indirect pathway (illustrated as the darker blue oval). Hence, movement commands prefer to flow through the indirect pathway but not through the direct pathway, generating an enhanced “stop” signal and a diminished “go” signal (dashed arrows). Without dopamine, feedback on behavioral consequences is not generated, and no proper motor learning occurs in the striatum. c When PD patients are treated with levodopa, the striatal circuitry is constantly bombarded by abnormally sustained dopamine stimulation. Although levodopa administration can restore LTP and LTD formation in striatal synapses, it fails to replicate the spatiotemporal pattern of dopamine signaling in the healthy brain. As a result, synaptic strength is no longer governed by the outcomes of behaviors but is erratically regulated. Since higher dopamine levels prefer to strengthen the direct pathway (illustrated as the darker orange oval) but suppress the indirect pathway (illustrated as the lighter blue oval), unwanted actions are not sufficiently suppressed by the indirect pathway, causing random execution of movement (arrows and movement icons). Reduced ChI activity and cholinergic transmission have been reported after long-term levodopa treatment but contradicting evidence exists suggesting that ChIs might still be hyperactive
机译:健康与病理学纹纹运动机控制系统的图。示意图,示出了大脑中电机控制系统的组织原理。纹状体中直接和间接途径的活动分别由橙色和蓝色椭圆形式表示。还显示了来自中脑和纹状体CHI(紫色)的多巴胺神经元(绿色)。在健康的大脑中,在皮质和丘脑中编码动作序列,转移到纹状体(灰色箭头),并在短暂的多巴胺瞬变和乙酰胆碱释放后立即引发。一旦运动踢出,动作(移动图标)以独立于多巴胺的方式顺序地执行。施力电路的高度协调相互作用控制动作序列的执行,直接途径(橙色)促进适当的动作和间接途径(蓝色)抑制不需要的途径。两种途径之间的活动的精确平衡对于精确的运动序列性能至关重要(由合并区域指示每个颜色相似亮度的区域)。一旦运动完成,评估运动的后果,并且在施特拉特电路的Hebbian修改的两种智者和多巴胺神经元中产生预测误差的反馈信号。如果涉及运动的电路会对生存产生积极后果,它们会增强(通过突触LTP的形成),使其更容易在未来招募。在相反的场景中,如果行为后果比预期差,负责电路将被破坏(通过突触有限公司的形成),此后将更加难以激活。该功能反馈回路基于纹状体中的电机学习基础,其中Chis和多巴胺神经元在动作启动和结果评估阶段中起主要作用。 B在帕金森的条件下,多巴胺神经元丧失。纹状体中的多巴胺水平落在纹状体神经元和纹状体电路中的突触神经元和突触可塑性产生异常的稳态。 Chis更加同步地变得过度活跃和火力。 MSNS经历稳态变化,试图随着时间的推移恢复平衡。由于D1活化的长期丧失,直接途径MSN的内在激发性增加,并且由于D2活化的损失,间接途径的MSN的兴奋性降低。皮质纹状体突触处的双向突触可塑性是电机学习和运动控制的关键蜂窝基础。然而,由于PD中没有足够的多巴胺,因此在直接途径中没有在直接途径中形成LTP,而No Ltd可以在间接途径中形成;这种异常抑制直接途径(被示出为较轻的橙色椭圆形),但是人为地加强了间接途径(被称为较暗的蓝色椭圆形)。因此,运动命令更喜欢流过间接途径,而不是通过直接途径流过,产生增强的“停止”信号和减少的“去”信号(虚线箭头)。没有多巴胺,没有产生关于行为后果的反馈,并且在纹状体中没有发生适当的电机学习。 c当用左旋多巴处理PD患者时,通过异常持续的多巴胺刺激持续轰击纹纹能电路。虽然左旋多巴局可以在纹状体突触中恢复LTP和LTD形成,但它未能复制健康脑中的多巴胺信号的时空模式。结果,突触强度不再受行为结果的管辖,而是不规则。由于更高的多巴胺水平更倾向于加强直接途径(所示为橙色椭圆形)而是抑制间接途径(所示为较轻的蓝色椭圆形),间接途径不充分抑制不需要的动作,从而导致运动的随机执行(箭头和运动图标)。在长期左司泮治疗后报告了减少的CHI活性和胆碱能传播,但有矛盾的证据表明CHIS可能仍然有过度活跃

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号