首页> 美国卫生研究院文献>International Journal of Molecular Sciences >Comprehensive Analysis of Applicability Domains of QSPR Models for Chemical Reactions
【2h】

Comprehensive Analysis of Applicability Domains of QSPR Models for Chemical Reactions

机译:QSPR模型的适用性域综合分析化学反应模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nowadays, the problem of the model’s applicability domain (AD) definition is an active research topic in chemoinformatics. Although many various AD definitions for the models predicting properties of molecules (Quantitative Structure-Activity/Property Relationship (QSAR/QSPR) models) were described in the literature, no one for chemical reactions (Quantitative Reaction-Property Relationships (QRPR)) has been reported to date. The point is that a chemical reaction is a much more complex object than an individual molecule, and its yield, thermodynamic and kinetic characteristics depend not only on the structures of reactants and products but also on experimental conditions. The QRPR models’ performance largely depends on the way that chemical transformation is encoded. In this study, various AD definition methods extensively used in QSAR/QSPR studies of individual molecules, as well as several novel approaches suggested in this work for reactions, were benchmarked on several reaction datasets. The ability to exclude wrong reaction types, increase coverage, improve the model performance and detect Y-outliers were tested. As a result, several “best” AD definitions for the QRPR models predicting reaction characteristics have been revealed and tested on a previously published external dataset with a clear AD definition problem.
机译:如今,模型的适用性域(AD)定义的问题是化疗中的活跃研究主题。虽然在文献中描述了许多用于预测分子的性质的模型的各种AD定义(定量结构 - 活性/性能关系(QSAR / QSPR)模型),但没有用于化学反应(定量反应性关系(QRPR))已经存在迄今为止报道。关键是化学反应是比单个分子更复杂的物体,其产量,热力学和动力学特性不仅取决于反应物和产品的结构,还取决于实验条件。 QRPR模型的性能很大程度上取决于化学转换被编码的方式。在本研究中,各种AD定义方法广泛用于各个分子的QSAR / QSPR研究中,以及在这项工作中提出的几种新方法进行反应,在几个反应数据集上基准测试。测试了排除错误的反应类型,增加覆盖范围,提高模型性能并检测Y-viepers的能力。结果,已经在先前发布的外部数据集中揭示并测试了预测反应特性的QRPR模型的几个“最佳”广告定义,并在具有明确的AD定义问题的外部数据集上进行了测试。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号