首页> 美国卫生研究院文献>Journal of Experimental Botany >Seed comparative genomics in three coffee species identify desiccation tolerance mechanisms in intermediate seeds
【2h】

Seed comparative genomics in three coffee species identify desiccation tolerance mechanisms in intermediate seeds

机译:三种咖啡物种的种子比较基因组学确定了中间种子的脱水耐性机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In contrast to desiccation-tolerant ‘orthodox’ seeds, so-called ‘intermediate’ seeds cannot survive complete drying and are short-lived. All species of the genus produce intermediate seeds, but they show a considerable variability in seed desiccation tolerance (DT), which may help to decipher the molecular basis of seed DT in plants. We performed a comparative transcriptome analysis of developing seeds in three coffee species with contrasting desiccation tolerance. Seeds of all species shared a major transcriptional switch during late maturation that governs a general slow-down of metabolism. However, numerous key stress-related genes, including those coding for the late embryogenesis abundant protein EM6 and the osmosensitive calcium channel ERD4, were up-regulated during DT acquisition in the two species with high seed DT, and . By contrast, we detected up-regulation of numerous genes involved in the metabolism, transport, and perception of auxin in seeds with low DT. Moreover, species with high DT showed a stronger down-regulation of the mitochondrial machinery dedicated to the tricarboxylic acid cycle and oxidative phosphorylation. Accordingly, respiration measurements during seed dehydration demonstrated that intermediate seeds with the highest DT are better prepared to cease respiration and avoid oxidative stresses.
机译:与耐干燥的“正统”种子相反,所谓的“中间”种子无法完全干燥,并且寿命短。该属的所有物种均产生中间种子,但它们在种子脱水耐受性(DT)中显示出相当大的变异性,这可能有助于破译植物中种子DT的分子基础。我们进行了对比转录组分析,研究了三种具有相反脱水耐性的咖啡种子的发育过程。所有物种的种子在成熟后期均具有主要的转录转换,从而控制了新陈代谢的总体减慢。但是,在具有高种子DT的两个物种的DT采集过程中,许多关键的与胁迫相关的基因,包括编码晚期胚胎发生的丰富蛋白EM6和渗透敏感性钙通道ERD4的那些,均被上调。相比之下,我们检测到低DT种子中涉及代谢,转运和生长素感知的众多基因的上调。此外,具有高DT的物种显示出专用于三羧酸循环和氧化磷酸化的线粒体机制的较强下调。因此,种子脱水过程中的呼吸测量结果表明,具有最高DT的中间种子可以更好地准备停止呼吸并避免氧化胁迫。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号