首页> 美国卫生研究院文献>Micromachines >Manufacturing of Al Alloy Microrods by Micro Cutting in a Micromachining Center
【2h】

Manufacturing of Al Alloy Microrods by Micro Cutting in a Micromachining Center

机译:在微加工中心通过微切削制造铝合金微棒

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents the micromanufacturing of aluminum (Al) alloy microrods using micro turning as a competing process to other nontraditional micromachining methods. In that regard, the challenges in such manufacturing have been identified and overcome. The strategies of step-by-step cutting have also been delineated. In addition, the influence of step size and step length on the cutting and thrust forces were investigated. The chip morphology for micromachining was examined using scanning electron microscopic imagery. The safe dimension of the microrod was calculated and, subsequently, used to fabricate microrod, conical tip rod, and grooved rod from 3 mm long and 1.5 mm diameter rod using an appropriately coded computer numerical control (CNC) micromachining center. Our results showed that the thrust force was responsible for part deflection, emphasizing the necessity for computing safe dimensions. At shallow step sizes, the thrust force was more dominant, causing plastic deformation associated with rubbing and burnishing. The chips produced were irregular and sliced in nature. Conversely, at high step sizes, the cutting force superseded the thrust force, resulting in chips that were spread more along the width as opposed to the depth. The chips also had a smoother interacting surface. Finally, micro turning was successfully implemented to manufacture milli-scale structures (i.e., 3 mm long) with micro features (150 to 230 μm diameter) on aluminum alloy materials.
机译:本文介绍了使用微车削作为与其他非传统微加工方法的竞争过程的铝(Al)合金微棒的微制造。在这方面,已经查明并克服了这种制造中的挑战。还描述了逐步切割的策略。此外,研究了步长和步长对切削力和推力的影响。使用扫描电子显微镜图像检查了用于微加工的芯片形态。计算出微棒的安全尺寸,然后使用适当编码的计算机数控(CNC)微加工中心,从3 mm长和1.5 mm直径的棒中制造微棒,圆锥形尖端棒和带槽棒。我们的结果表明,推力是零件变形的原因,强调了计算安全尺寸的必要性。在较小的步距大小下,推力更占优势,从而导致与摩擦和抛光相关的塑性变形。产生的木片是不规则的,并且自然切片。相反,在大步距下,切削力取代了推力,导致切屑沿宽度方向而不是沿深度方向更多地散布。芯片还具有更平滑的相互作用表面。最后,成功实施了微车削加工,以在铝合金材料上制造具有微特征(直径为150至230μm)的毫米级结构(即3 mm长)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号