首页> 美国卫生研究院文献>Materials >High-temperature Mechanical Properties and Their Influence Mechanisms of ZrC-Modified C-SiC Ceramic Matrix Composites up to 1600 °C
【2h】

High-temperature Mechanical Properties and Their Influence Mechanisms of ZrC-Modified C-SiC Ceramic Matrix Composites up to 1600 °C

机译:ZrC改性C-SiC陶瓷基复合材料在1600°C以下的高温力学性能及其影响机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In order to understand the influence of the mechanisms of ZrC nanoparticles on the high-temperature mechanical properties of C-SiC ceramic matrix composites, the mechanical properties were measured from room temperature (RT) to 1600 °C under vacuum. The microstructures features were characterized by scanning electron microscopy. In comparison with the composites without ZrC nanoparticles, the ZrC-modified composite presented better mechanical properties at all temperatures, indicating that the mechanical properties could be improved by the ZrC nanoparticles. The ZrC nanoparticles could reduce the residual silicon and improve the microstructure integrity of composite. Furthermore, the variation of flexural strength and the flexural modulus showed an asynchronous trend with the increase of temperature. The flexural strength reached the maximum value at 1200 °C, but the highest elastic modulus was obtained at 800 °C. The strength increase was ascribed to the decrease of the thermally-induced residual stresses. The degradation of mechanical properties was observed at 1600 °C because of the microstructure deterioration and the formation of strongly bonded fiber–matrix interface. Therefore, it is concluded that the high temperature mechanical properties under vacuum were related to the consisting phase, the matrix microstructure, and the thermally-induced residual stresses.
机译:为了了解ZrC纳米颗粒的机理对C-SiC陶瓷基复合材料高温机械性能的影响,在室温(RT)到1600°C的真空下测量了机械性能。微观结构特征通过扫描电子显微镜表征。与不含ZrC纳米颗粒的复合材料相比,ZrC改性的复合材料在所有温度下均表现出更好的机械性能,这表明ZrC纳米颗粒可以改善机械性能。 ZrC纳米粒子可以减少残留的硅并改善复合材料的微观结构完整性。此外,随着温度的升高,弯曲强度和弯曲模量的变化呈现出非同步趋势。弯曲强度在1200℃下达到最大值,但在800℃下获得最高弹性模量。强度的增加归因于热诱导残余应力的降低。在1600°C时观察到了机械性能的下降,这是因为微观结构的恶化以及形成了牢固结合的纤维-基体界面。因此,可以得出结论,真空下的高温机械性能与组成相,基体组织和热致残余应力有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号