首页> 美国卫生研究院文献>Biomolecules >Machine Learning Approaches for Quality Assessment of Protein Structures
【2h】

Machine Learning Approaches for Quality Assessment of Protein Structures

机译:蛋白质结构质量评估的机器学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Protein structures play a very important role in biomedical research, especially in drug discovery and design, which require accurate protein structures in advance. However, experimental determinations of protein structure are prohibitively costly and time-consuming, and computational predictions of protein structures have not been perfected. Methods that assess the quality of protein models can help in selecting the most accurate candidates for further work. Driven by this demand, many structural bioinformatics laboratories have developed methods for estimating model accuracy (EMA). In recent years, EMA by machine learning (ML) have consistently ranked among the top-performing methods in the community-wide CASP challenge. Accordingly, we systematically review all the major ML-based EMA methods developed within the past ten years. The methods are grouped by their employed ML approach—support vector machine, artificial neural networks, ensemble learning, or Bayesian learning—and their significances are discussed from a methodology viewpoint. To orient the reader, we also briefly describe the background of EMA, including the CASP challenge and its evaluation metrics, and introduce the major ML/DL techniques. Overall, this review provides an introductory guide to modern research on protein quality assessment and directions for future research in this area.
机译:蛋白质结构在生物医学研究中起着非常重要的作用,尤其是在药物发现和设计中,这需要事先精确的蛋白质结构。但是,蛋白质结构的实验测定成本高昂且费时,而且蛋白质结构的计算预测尚未完善。评估蛋白质模型质量的方法可以帮助选择最准确的候选对象以进行进一步的工作。在这种需求的驱动下,许多结构生物信息学实验室已经开发出估算模型准确性(EMA)的方法。近年来,通过机器学习(ML)进行的EMA一直是社区范围CASP挑战中表现最好的方法之一。因此,我们系统地回顾了过去十年中开发的所有主要的基于ML的EMA方法。这些方法按其采用的ML方法(支持向量机,人工神经网络,集成学习或贝叶斯学习)进行分组,并从方法论的角度讨论其意义。为了使读者适应需求,我们还简要介绍了EMA的背景,包括CASP挑战及其评估指标,并介绍了主要的ML / DL技术。总的来说,这篇综述为蛋白质质量评估的现代研究提供了入门指南,并为该领域的未来研究指明了方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号