首页> 美国卫生研究院文献>Advanced Science >Transient Electronic Depletion and Lattice Expansion Induced Ultrafast Bandedge Plasmons
【2h】

Transient Electronic Depletion and Lattice Expansion Induced Ultrafast Bandedge Plasmons

机译:瞬态电子耗竭和晶格扩展诱导超快带边缘等离子体。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Strong optical excitation of plasmonic nanostructures may induce simultaneous interband and intraband electronic transitions. However, interaction mechanisms between interband, intraband, and plasmon‐band processes have not been thoroughly understood. In particular, optical‐heating‐induced lattice expansion, which definitely leads to shift of the Fermi level, has not been taken into account in plasmonic studies. Here, it is shown that plasmonic bandedge shift is responsible for the optical modulation on the boundary between plasmonic electron oscillation and interband transitions via investigations on gold nanofilms and nanoparticles. Strong optical excitation induces transient depletion of the conduction band just below the Fermi level through intraband transitions, while the subsequent lattice heating induces transient thermal expansion and hence lowers the Fermi level. Both effects reduce the threshold for interband transitions and therefore push the plasmonic bandedge to the red. These discoveries introduce a first correlation between plasmonic response and optical excitation induced thermal expansion of lattices. The revealed Fermi‐level adjustment mechanism allows alignment of electronic levels at the metal–semiconductor interfaces, which applies to all conductive materials and renders reliable physics for the design of plasmonic or optoelectronic devices.
机译:等离子体纳米结构的强光激发可能会诱导同时的带内和带内电子跃迁。但是,还没有完全了解带间,带内和等离激元带过程之间的交互机制。特别是,在等离子体激元研究中并未考虑光加热引起的晶格扩展,这肯定会导致费米能级的移动。在这里,通过对金纳米膜和纳米颗粒的研究,表明等离激元能带边移是引起等离激元电子振荡和带间跃迁之间边界上的光调制的原因。强光激发通过带内跃迁在Fermi能级以下引起导带的瞬态耗尽,而随后的晶格加热引起瞬态热膨胀并因此降低了Fermi能级。两种效应都降低了带间跃迁的阈值,因此将等离子波带边缘推向红色。这些发现在等离子体响应和光激发引起的晶格的热膨胀之间引入了第一相关性。揭示的费米能级调节机制可以使金属-半导体界面处的电子能级对齐,这适用于所有导电材料,并为等离子或光电设备的设计提供了可靠的物理原理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号