首页> 美国卫生研究院文献>other >An Intersection Inequality Sharper than the Tanimoto Triangle Inequality for Efficiently Searching Large Databases
【2h】

An Intersection Inequality Sharper than the Tanimoto Triangle Inequality for Efficiently Searching Large Databases

机译:一个路口不平等沙坡比谷本三角不等式有效地搜索大型数据库

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bounds on distances or similarity measures can be useful to help search large databases efficiently. Here we consider the case of large databases of small molecules represented by molecular fingerprint vectors with the Tanimoto similarity measure. We derive a new intersection inequality which provides a bound on the Tanimoto similarity between two fingerprint vectors and show that this bound is considerably sharper than the bound associated with the triangle inequality of the Tanimoto distance. The inequality can be applied to other intersection-based similarity measures. We introduce a new integer representation which relies on partitioning the fingerprint components, for instance by taking components modulo some integer M, and reporting the total number of 1-bits falling in each partition. We show how the intersection inequality can be generalized immediately to these integer representations and used to search large databases of binary fingerprint vectors efficiently.

著录项

  • 期刊名称 other
  • 作者单位
  • 年(卷),期 -1(49),8
  • 年度 -1
  • 页码 1866–1870
  • 总页数 13
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号