首页> 美国卫生研究院文献>PLoS Neglected Tropical Diseases >Improving early epidemiological assessment of emerging Aedes-transmitted epidemics using historical data
【2h】

Improving early epidemiological assessment of emerging Aedes-transmitted epidemics using historical data

机译:使用历史数据改进对新兴伊蚊传播的流行病的早期流行病学评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Model-based epidemiological assessment is useful to support decision-making at the beginning of an emerging Aedes-transmitted outbreak. However, early forecasts are generally unreliable as little information is available in the first few incidence data points. Here, we show how past Aedes-transmitted epidemics help improve these predictions. The approach was applied to the 2015–2017 Zika virus epidemics in three islands of the French West Indies, with historical data including other Aedes-transmitted diseases (chikungunya and Zika) in the same and other locations. Hierarchical models were used to build informative a priori distributions on the reproduction ratio and the reporting rates. The accuracy and sharpness of forecasts improved substantially when these a priori distributions were used in models for prediction. For example, early forecasts of final epidemic size obtained without historical information were 3.3 times too high on average (range: 0.2 to 5.8) with respect to the eventual size, but were far closer (1.1 times the real value on average, range: 0.4 to 1.5) using information on past CHIKV epidemics in the same places. Likewise, the 97.5% upper bound for maximal incidence was 15.3 times (range: 2.0 to 63.1) the actual peak incidence, and became much sharper at 2.4 times (range: 1.3 to 3.9) the actual peak incidence with informative a priori distributions. Improvements were more limited for the date of peak incidence and the total duration of the epidemic. The framework can adapt to all forecasting models at the early stages of emerging Aedes-transmitted outbreaks.
机译:基于模型的流行病学评估对于在新兴的伊蚊传播的爆发开始时的决策制定很有用。但是,由于前几个发病率数据点中几乎没有可用的信息,因此早期的预测通常是不可靠的。在这里,我们展示了过去伊蚊传播的流行病如何帮助改善这些预测。该方法已应用于法属西印度群岛三个岛屿的2015–2017年寨卡病毒流行病,历史数据包括同一地点和其他地点的其他伊蚊传播的疾病(基孔肯雅热和寨卡)。层次模型被用来建立关于繁殖率和报告率的信息性先验分布。当这些先验分布用于预测模型时,预测的准确性和清晰度会大大提高。例如,在没有历史信息的情况下,对最终流行病规模的早期预测相对于最终规模平均高出3.3倍(范围:0.2到5.8),但更接近(平均实际值的1.1倍,范围:0.4)。至1.5),使用有关同一地点过去的CHIKV流行病的信息。同样,最大发生率的97.5%上限是实际峰值发生率的15.3倍(范围:2.0到63.1),并且在具有先验分布的情况下以实际峰值发生率的2.4倍(范围:1.3到3.9)变得更加尖锐。在高峰发病日期和流行病的总持续时间方面的改进受到更多限制。该框架可以适应由伊蚊传播的爆发的早期阶段的所有预测模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号