首页> 美国卫生研究院文献>other >Near Infrared Photoacoustic Detection of Sentinel Lymph Nodes with Gold Nanobeacons
【2h】

Near Infrared Photoacoustic Detection of Sentinel Lymph Nodes with Gold Nanobeacons

机译:近红外光声检测哨纳米金纳米

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Detection of sentinel lymph node (SLN) using photoacoustic imaging is an emerging technique for noninvasive axillary staging of breast cancer. Due to the absence of intrinsic contrast inside the lymph nodes, exogenous contrast agents are used for photoacoustic detection. In this work, we have demonstrated near infrared detection of SLN with gold nanobeacons (GNB) providing the photoacoustic contrast in a rodent model. We found that size dictates the in vivo characteristics of these nanoparticles in SLN imaging. Larger nanobeacons with high pay loads of gold were not as efficient as smaller size nanobeacons with lower pay loads for this purpose. Colloidal GNBs were designed as a nanomedicine platform with “soft” nature that is amenable to bio-elimination, an essential feature for in vivo efficacy and safety. The GNBs were synthesized as lipid- or polymer-encapsulated colloidal particles incorporating tiny gold nanoparticles (2–4 nm) in three tunable sizes (90 nm, 150 nm and 290 nm). Smaller GNBs were noted trafficking through the lymphatic system and accumulating more efficiently in the lymph nodes in comparison to the bigger nanoagents. At 20 min, the GNBs reached the SLN and were no longer observed within the draining lymphatic vessel. Within one hour post injection, the contrast ratio of the lymphnodes with the surrounding blood vessels was 9:1. These findings were also supported by analytical measurements of the ex vivo tissue samples. Results indicate that cumulative nanoparticle deposition in lymph nodes is size dependent and that high payloads of gold, although offering greater contrast in vitro, may yield nanoagents with poor intradermal migration and lymphatic transport characteristics.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号