首页> 美国卫生研究院文献>other >Evaluating the Validity of Volume-Based and Surface-Based Brain Image Registration for Developmental Cognitive Neuroscience Studies in Children 4-to-11 Years of Age
【2h】

Evaluating the Validity of Volume-Based and Surface-Based Brain Image Registration for Developmental Cognitive Neuroscience Studies in Children 4-to-11 Years of Age

机译:在孩子4至11岁的评价基于卷的和基于表面的大脑图像配准发展认知神经研究的有效性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding the neurophysiology of human cognitive development relies on methods that enable accurate comparison of structural and functional neuroimaging data across brains from people of different ages. A fundamental question is whether the substantial brain growth and related changes in brain morphology that occur in early childhood permit valid comparisons of brain structure and function across ages. Here we investigated whether valid comparisons can be made in children from ages 4–11, and whether there are differences in the use of volume-based versus surface-based registration approaches for aligning structural landmarks across these ages. Regions corresponding to the calcarine sulcus, central sulcus, and Sylvian fissure in both the hemispheres were manually labeled on T1-weighted structural magnetic resonance images from 31 children ranging in age from 4.2 to 11.2 years old. Quantitative measures of shape similarity and volumetric-overlap of these manually labeled regions were calculated when brains were aligned using a 12-parameter affine transform, SPM's nonlinear normalization, a diffeomorphic registration (ANTS), and FreeSurfer's surface-based registration. Registration error for normalization into a common reference framework across participants in this age range was lower than commonly used functional imaging resolutions. Surface-based registration provided significantly better alignment of cortical landmarks than volume-based registration. In addition, registering children's brains to a common space does not result in an age-associated bias between older and younger children, making it feasible to accurately compare structural properties and patterns of brain activation in children from ages 4–11.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号