首页> 美国卫生研究院文献>other >Enhanced responsivity of 5-HT2A receptors at warm ambient temperatures is responsible for the augmentation of the 1-(25-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-induced hyperthermia
【2h】

Enhanced responsivity of 5-HT2A receptors at warm ambient temperatures is responsible for the augmentation of the 1-(25-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-induced hyperthermia

机译:在温热的环境温度下增强5-HT2A受体的响应性是1-(25-二甲氧基-4-碘苯基)-2-氨基丙烷(DOI) - 诱导的热疗的增强

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Warm ambient temperature facilitates hyperthermia and other neurotoxic responses elicited by psychogenic drugs such as MDMA and methamphetamine. However, little is known about the neural mechanism underlying such effects. In the present study, we tested the hypothesis that a warm ambient temperature may enhance the responsivity of 5-HT2A receptors in the central nervous system and thereafter cause an augmented response to 5-HT2A receptor agonists. This hypothesis was tested by measuring changes in body-core temperature in response to the 5-HT2A receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) administered at four different ambient temperature levels: 12 °C (cold), 22 °C (standard), 27 °C (thermoneutral zone) and 32 °C (warm). It was found that DOI only evoked a small increase in body-core temperature at the standard (22 °C) or thermoneutral ambient temperature (27 °C). In contrast, there was a large increase in body-core temperature when the experiments were conducted at the warmer ambient temperature (32 °C). Interestingly, the effect of DOI at the cold ambient temperature of 12 °C was significantly reduced. Moreover, the ambient temperature-dependent response to DOI was completely blocked by pretreatment with the 5-HT2A receptor antagonist ketanserin. Taken together, these findings support the hypothesis that 5-HT2A receptors may be responsible for some neurotoxic effects of psychogenic drugs in the central nervous system, the activity of which is functionally inhibited at cold but enhanced at warm ambient temperature in contrast to that at standard experimental conditions.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号