首页> 美国卫生研究院文献>Journal of Digital Imaging >Neural Network Ensemble Based CAD System for Focal Liver Lesions from B-Mode Ultrasound
【2h】

Neural Network Ensemble Based CAD System for Focal Liver Lesions from B-Mode Ultrasound

机译:基于神经网络集成的B型超声对局灶性肝病变的CAD系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A neural network ensemble (NNE) based computer-aided diagnostic (CAD) system to assist radiologists in differential diagnosis between focal liver lesions (FLLs), including (1) typical and atypical cases of Cyst, hemangioma (HEM) and metastatic carcinoma (MET) lesions, (2) small and large hepatocellular carcinoma (HCC) lesions, along with (3) normal (NOR) liver tissue is proposed in the present work. Expert radiologists, visualize the textural characteristics of regions inside and outside the lesions to differentiate between different FLLs, accordingly texture features computed from inside lesion regions of interest (IROIs) and texture ratio features computed from IROIs and surrounding lesion regions of interests (SROIs) are taken as input. Principal component analysis (PCA) is used for reducing the dimensionality of the feature space before classifier design. The first step of classification module consists of a five class PCA-NN based primary classifier which yields probability outputs for five liver image classes. The second step of classification module consists of ten binary PCA-NN based secondary classifiers for NOR/Cyst, NOR/HEM, NOR/HCC, NOR/MET, Cyst/HEM, Cyst/HCC, Cyst/MET, HEM/HCC, HEM/MET and HCC/MET classes. The probability outputs of five class PCA-NN based primary classifier is used to determine the first two most probable classes for a test instance, based on which it is directed to the corresponding binary PCA-NN based secondary classifier for crisp classification between two classes. By including the second step of the classification module, classification accuracy increases from 88.7 % to 95 %. The promising results obtained by the proposed system indicate its usefulness to assist radiologists in differential diagnosis of FLLs.
机译:基于神经网络集成(NNE)的计算机辅助诊断(CAD)系统,可协助放射科医生对局灶性肝病灶(FLL)进行鉴别诊断,包括(1)囊肿,血管瘤(HEM)和转移性癌(MET)的典型和非典型病例)病变,(2)小型和大型肝细胞癌(HCC)病变,以及(3)正常(NOR)肝组织被提出。放射线专家会可视化病变内部和外部的区域的纹理特征,以区分不同的FLL,从而从感兴趣的病变内部区域(IROI)计算出的纹理特征以及根据IROI和周围病变区域感兴趣的区域(SROI)计算出的纹理比率特征是作为输入。主成分分析(PCA)用于在分类器设计之前降低特征空间的维数。分类模块的第一步包括一个基于五类PCA-NN的主分类器,该分类器产生五个肝脏图像分类的概率输出。分类模块的第二步包括针对NOR / Cyst,NOR / HEM,NOR / HCC,NOR / MET,Cyst / HEM,Cyst / HCC,Cyst / MET,HEM / HCC,HEM的十个基于PCA-NN的二进制二级分类器/ MET和HCC / MET类。基于五类PCA-NN的主分类器的概率输出用于确定测试实例的前两个最可能的类,基于该概率输出,将其定向到相应的基于PCA-NN的二进制第二分类器,以在两个类之间进行清晰分类。通过包括分类模块的第二步,分类精度从88.7%提高到95%。拟议的系统获得的有希望的结果表明,它在协助放射科医生进行FLL的鉴别诊断方面很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号