首页> 美国卫生研究院文献>other >Computational Framework for Analysis of Prey–Prey Associations in Interaction Proteomics Identifies Novel Human Protein–Protein Interactions and Networks
【2h】

Computational Framework for Analysis of Prey–Prey Associations in Interaction Proteomics Identifies Novel Human Protein–Protein Interactions and Networks

机译:相互作用蛋白质组学中的猎物猎物关联分析的计算框架鉴定了新的人蛋白 - 蛋白质相互作用和网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Large-scale protein–protein interaction data sets have been generated for several species including yeast and human and have enabled the identification, quantification, and prediction of cellular molecular networks. Affinity purification-mass spectrometry (AP-MS) is the preeminent methodology for large-scale analysis of protein complexes, performed by immunopurifying a specific “bait” protein and its associated “prey” proteins. The analysis and interpretation of AP-MS data sets is, however, not straightforward. In addition, although yeast AP-MS data sets are relatively comprehensive, current human AP-MS data sets only sparsely cover the human interactome. Here we develop a framework for analysis of AP-MS data sets that addresses the issues of noise, missing data, and sparsity of coverage in the context of a current, real world human AP-MS data set. Our goal is to extend and increase the density of the known human interactome by integrating bait–prey and cocomplexed preys (prey–prey associations) into networks. Our framework incorporates a score for each identified protein, as well as elements of signal processing to improve the confidence of identified protein–protein interactions. We identify many protein networks enriched in known biological processes and functions. In addition, we show that integrated bait–prey and prey–prey interactions can be used to refine network topology and extend known protein networks.
机译:已经为包括酵母和人类在内的多个物种生成了大规模的蛋白质-蛋白质相互作用数据集,这些数据集使细胞分子网络的鉴定,定量和预测成为可能。亲和纯化质谱法(AP-MS)是蛋白质复合物大规模分析的主要方法,通过免疫纯化特定的“诱饵”蛋白及其相关的“猎物”蛋白来进行。但是,AP-MS数据集的分析和解释并不简单。此外,尽管酵母AP-MS数据集相对全面,但当前的人类AP-MS数据集仅很少涵盖人类交互组。在这里,我们开发了一个用于分析AP-MS数据集的框架,该框架解决了在当前现实世界中人类AP-MS数据集的背景下出现的噪声,数据丢失和覆盖率稀疏性的问题。我们的目标是通过将诱饵-猎物和共复杂的猎物(猎物-猎物协会)整合到网络中来扩展和增加已知人类交互组的密度。我们的框架结合了每种已鉴定蛋白质的得分以及信号处理要素,以提高已鉴定蛋白质与蛋白质相互作用的可信度。我们发现许多蛋白质网络富含已知的生物学过程和功能。此外,我们证明集成的诱饵-猎物和猎物-猎物相互作用可以用来完善网络拓扑并扩展已知的蛋白质网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号