首页> 外文学位 >A molecular dynamics simulation based principal component analysis framework for computation of multi-scale modeling of protein and its interaction with solvent.
【24h】

A molecular dynamics simulation based principal component analysis framework for computation of multi-scale modeling of protein and its interaction with solvent.

机译:基于分子动力学模拟的主成分分析框架,用于蛋白质多尺度建模及其与溶剂的相互作用计算。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents a new computational framework for calculating the normal modes and interactions of proteins, macromolecular assemblies and surrounding solvents. The framework employs a combination of molecular dynamics simulation (MD) and principal component analysis (PCA). It enables the capture and visualization of the molecules' normal modes and interactions over time scales that are computationally challenging. It also provides a starting point for experimental and further computational studies of protein conformational changes.;A protein's function is sometimes linked to its conformational flexibility. Normal mode analysis (NMA) and various extensions of it have provided insights into the conformational fluctuations associated with individual protein structures. In traditional NMA, each protein requires a customized model for such analysis due to its mechanical complexity. The methodology presented here is applicable to any protein with known atomic coordinates. Because of its computational efficiency and scalability, it facilitates the study of slow protein conformational changes (on the order of milliseconds), such as protein folding.;PCA reduces the dimensionality of MD atomic trajectory data and provides a concise way to visualize, analyze, and compare the motions observed over the course of a simulation. PCA involves diagonalization of the positional covariance matrix and identification of an orthogonal set of eigenvectors or "modes" describing the direction of maximum variation in the observed conformational distribution. Consequently, slow conformational changes can be identified by projecting these dominant modes back to original trajectory data.;In this work, the new multiscale methodology was first applied to a relatively small mutant T4 phage lysozyme, establishing its equilibrium atomic thermal fluctuations and its inter-residue fluctuation correlations. These results were compared with published data obtained by NMA, by finite element methods, and by experiment. The eigenmodes captured are in quantitative agreement with previously published results. With this success on a small protein, the method was applied to the interaction of mutated hemoglobin molecules that cause sickle cell anemia and the atomic level details of which are unknown. The new methodology reveals slow motion processes of the hemoglobin-hemoglobin interaction.;MD based PCA is computationally expensive. Thus, this dissertation work also includes a widely-applicable parallel programming implementation of the modeling framework to improve its performance.
机译:本文为蛋白质,高分子组装体和周围溶剂的正态模式和相互作用的计算提供了一个新的计算框架。该框架结合了分子动力学模拟(MD)和主成分分析(PCA)的功能。它可以捕获和可视化分子的正常模式以及在时间跨度上具有计算挑战性的相互作用。它还为蛋白质构象变化的实验和进一步的计算研究提供了起点。蛋白质的功能有时与其构象柔韧性有关。正常模式分析(NMA)及其各种扩展已经提供了对与单个蛋白质结构相关的构象波动的见解。在传统的NMA中,由于其机械复杂性,每种蛋白质都需要针对这种分析的定制模型。此处介绍的方法适用于具有已知原子坐标的任何蛋白质。由于其计算效率和可扩展性,它有助于研究慢速蛋白质构象变化(以毫秒为单位),例如蛋白质折叠。; PCA降低了MD原子轨迹数据的维数,并提供了一种直观的方式来可视化,分析,并比较模拟过程中观察到的运动。 PCA涉及位置协方差矩阵的对角线化和特征向量或“模式”正交集的标识,这些特征描述了观察到的构象分布中最大变化的方向。因此,可以通过将这些主导模式投射回原始轨迹数据来识别缓慢的构象变化。在这项工作中,新的多尺度方法首先应用于相对较小的突变T4噬菌体溶菌酶,建立了其平衡原子热波动及其相互之间的平衡。残留物波动相关性。将这些结果与NMA,有限元方法和实验获得的公开数据进行了比较。捕获的本征模与先前发表的结果在数量上一致。凭借在小蛋白上的成功,该方法被应用于引起镰状细胞性贫血的突变血红蛋白分子的相互作用,其原子水平细节尚不清楚。新方法揭示了血红蛋白与血红蛋白相互作用的慢动作过程。基于MD的PCA在计算上昂贵。因此,本论文的工作还包括对建模框架进行广泛应用的并行编程实现,以提高其性能。

著录项

  • 作者

    Wu, Tao.;

  • 作者单位

    New Jersey Institute of Technology.;

  • 授予单位 New Jersey Institute of Technology.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号