首页> 美国卫生研究院文献>other >A Tale of Two Forests: Random Forest Machine Learning Aids Tropical Forest Carbon Mapping
【2h】

A Tale of Two Forests: Random Forest Machine Learning Aids Tropical Forest Carbon Mapping

机译:两个森林的故事:随机森林机器学习辅助热带森林碳测绘

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus). The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional and potentially more reliable techniques such as regionally stratified sampling and upscaling, and it has rarely been employed with spatial data. Here, we evaluated the performance of Random Forest in upscaling airborne LiDAR (Light Detection and Ranging)-based carbon estimates compared to the stratification approach over a 16-million hectare focal area of the Western Amazon. We considered two runs of Random Forest, both with and without spatial contextual modeling by including—in the latter case—x, and y position directly in the model. In each case, we set aside 8 million hectares (i.e., half of the focal area) for validation; this rigorous test of Random Forest went above and beyond the internal validation normally compiled by the algorithm (i.e., called “out-of-bag”), which proved insufficient for this spatial application. In this heterogeneous region of Northern Peru, the model with spatial context was the best preforming run of Random Forest, and explained 59% of LiDAR-based carbon estimates within the validation area, compared to 37% for stratification or 43% by Random Forest without spatial context. With the 60% improvement in explained variation, RMSE against validation LiDAR samples improved from 33 to 26 Mg C ha−1 when using Random Forest with spatial context. Our results suggest that spatial context should be considered when using Random Forest, and that doing so may result in substantially improved carbon stock modeling for purposes of climate change mitigation.
机译:要实现碳补偿机制(例如REDD +(减少的森林砍伐和退化加成)),需要热带森林碳储量的准确且空间明晰的地图。随机森林机器学习算法可以使用遥感数据协助碳测绘应用。但是,从未将“随机森林”与传统且可能更可靠的技术(例如区域分层采样和放大)进行比较,并且很少将其与空间数据一起使用。在此,我们与西亚马逊地区1600万公顷重点区域的分层方法相比,在基于机载LiDAR(光检测和测距)的碳估算值提升中评估了随机森林的性能。我们通过在模型中直接包含x和y位置(在后一种情况下)来考虑两次随机森林的运行,无论是否进行空间上下文建模。在每种情况下,我们都会预留800万公顷(即重点区域的一半)进行验证;随机森林的这种严格测试超出了算法通常编译的内部验证范围(即称为“袋外”),事实证明对于此空间应用而言是不够的。在秘鲁北部这个异质性地区,具有空间背景的模型是随机森林的最佳预演,并解释了验证区域内基于LiDAR的碳估算的59%,相比之下,分层为37%或随机森林为43%,而没有空间背景。通过将解释性变异提高60%,在具有空间背景的情况下使用随机森林时,相对于验证LiDAR样本,RMSE从33 Mg C ha -1 提高了。我们的结果表明,使用随机森林时应考虑空间环境,这样做可能会大大改善碳储量模型,以缓解气候变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号