首页> 美国卫生研究院文献>Springer Open Choice >Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: a case site within the Niger Delta region of Nigeria
【2h】

Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: a case site within the Niger Delta region of Nigeria

机译:使用机器学习随机森林和Landsat 8 OLI影像绘制陆地溢油影响图:尼日利亚尼日尔三角洲地区的一个案例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Terrestrial oil pollution is one of the major causes of ecological damage within the Niger Delta region of Nigeria and has caused a considerable loss of mangroves and arable croplands since the discovery of crude oil in 1956. The exact extent of landcover loss due to oil pollution remains uncertain due to the variability in factors such as volume and size of the oil spills, the age of oil, and its effects on the different vegetation types. Here, the feasibility of identifying oil-impacted land in the Niger Delta region of Nigeria with a machine learning random forest classifier using Landsat 8 (OLI spectral bands) and Vegetation Health Indices is explored. Oil spill incident data for the years 2015 and 2016 were obtained from published records of the National Oil Spill Detection and Response Agency and Shell Petroleum Development Corporation. Various health indices and spectral wavelengths from visible, near-infrared, and shortwave infrared bands were fused and classified using the machine learning random forest classifier to distinguish between oil-free and oil spill–impacted landcover. This provided the basis for the identification of the best variables for discriminating oil polluted from unpolluted land. Results showed that better results for discriminating oil-free and oil polluted landcovers were obtained when individual landcover types were classified separately as opposed to when the full study area image including all landcover types was classified at once. Similarly, the results also showed that biomass density plays a significant role in the characterization and classification of oil contaminated and oil-free pixels as tree cover areas showed higher classification accuracy compared to cropland and grassland.
机译:陆地石油污染是尼日利亚尼日尔三角洲地区生态破坏的主要原因之一,自1956年发现原油以来,已经造成了红树林和可耕地的大量损失。由于石油污染造成的土地覆盖物损失的确切程度仍然存在由于诸如溢油量和大小,油龄及其对不同植被类型的影响等因素的可变性,不确定性。在这里,探索了使用Landsat 8(OLI谱带)和植被健康指数通过机器学习随机森林分类器识别尼日利亚尼日尔三角洲地区受油影响的土地的可行性。 2015年和2016年的漏油事件数据来自国家漏油检测和响应机构以及壳牌石油开发公司的已发布记录。使用机器学习随机森林分类器对可见,近红外和短波红外波段的各种健康指数和光谱波长进行了融合和分类,以区分无油和受溢油影响的土地覆盖物。这为识别最佳变量以区分未污染土地污染的石油提供了基础。结果表明,与单独对包括所有土地覆盖类型的整个研究区域图像进行分类相比,单独对单个土地覆盖类型进行分类可获得更好的区分无油和油污染的土地覆盖的结果。同样,结果还表明,生物量密度在油污像素和无油像素的表征和分类中起着重要作用,因为与耕地和草地相比,树木覆盖的区域显示出更高的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号