首页> 美国卫生研究院文献>other >Bifurcation Analysis in Models for Vector-Borne Diseases with Logistic Growth
【2h】

Bifurcation Analysis in Models for Vector-Borne Diseases with Logistic Growth

机译:具有逻辑增长的媒介传染病模型中的分叉分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We establish and study vector-borne models with logistic and exponential growth of vector and host populations, respectively. We discuss and analyses the existence and stability of equilibria. The model has backward bifurcation and may have no, one, or two positive equilibria when the basic reproduction number R 0 is less than one and one, two, or three endemic equilibria when R 0 is greater than one under different conditions. Furthermore, we prove that the disease-free equilibrium is stable if R 0 is less than 1, it is unstable otherwise. At last, by numerical simulation, we find rich dynamical behaviors in the model. By taking the natural death rate of host population as a bifurcation parameter, we find that the system may undergo a backward bifurcation, saddle-node bifurcation, Hopf bifurcation, Bogdanov-Takens bifurcation, and cusp bifurcation with the saturation parameter varying. The natural death rate of host population is a crucial parameter. If the natural death rate is higher, then the host population and the disease will die out. If it is smaller, then the host and vector population will coexist. If it is middle, the period solution will occur. Thus, with the parameter varying, the disease will spread, occur periodically, and finally become extinct.
机译:我们建立和研究媒介传播模型,分别具有媒介种群和宿主种群的对数和指数增长。我们讨论并分析了均衡的存在和稳定性。该模型具有向后分叉,当基本再生数R 0小于1时,模型可能没有正平衡,一个或两个正平衡,而在不同条件下,当R 0大于1时,模型可能没有一个,两个或三个地方平衡。此外,我们证明如果R 0小于1,则无病平衡是稳定的,否则,则是不稳定的。最后,通过数值模拟,我们在模型中发现了丰富的动力学行为。通过将宿主种群的自然死亡率作为分叉参数,我们发现系统可能会发生向后分叉,鞍节点分叉,Hopf分叉,Bogdanov-Takens分叉和尖顶分叉,且饱和参数会发生变化。寄主人口的自然死亡率是一个关键参数。如果自然死亡率更高,那么宿主种群和疾病将消亡。如果较小,则宿主和载体群体将共存。如果在中间,则会出现周期解。因此,随着参数的变化,疾病将扩散,周期性发生并最终灭绝。

著录项

  • 期刊名称 other
  • 作者

    Guihua Li; Zhen Jin;

  • 作者单位
  • 年(卷),期 -1(2014),-1
  • 年度 -1
  • 页码 195864
  • 总页数 9
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号