首页> 美国卫生研究院文献>other >Using Heuristic Value Prediction and Dynamic Task Granularity Resizing to Improve Software Speculation
【2h】

Using Heuristic Value Prediction and Dynamic Task Granularity Resizing to Improve Software Speculation

机译:使用启发式值预测和动态任务粒度调整来改善软件投机

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Exploiting potential thread-level parallelism (TLP) is becoming the key factor to improving performance of programs on multicore or many-core systems. Among various kinds of parallel execution models, the software-based speculative parallel model has become a research focus due to its low cost, high efficiency, flexibility, and scalability. The performance of the guest program under the software-based speculative parallel execution model is closely related to the speculation accuracy, the control overhead, and the rollback overhead of the model. In this paper, we first analyzed the conventional speculative parallel model and presented an analytic model of its expectation of the overall overhead, then optimized the conventional model based on the analytic model, and finally proposed a novel speculative parallel model named HEUSPEC. The HEUSPEC model includes three key techniques, namely, the heuristic value prediction, the value based correctness checking, and the dynamic task granularity resizing. We have implemented the runtime system of the model in ANSI C language. The experiment results show that when the speedup of the HEUSPEC model can reach 2.20 on the average (15% higher than conventional model) when depth is equal to 3 and 4.51 on the average (12% higher than conventional model) when speculative depth is equal to 7. Besides, it shows good scalability and lower memory cost.
机译:利用潜在的线程级并行性(TLP)成为提高多核或多核系统上程序性能的关键因素。在各种并行执行模型中,基于软件的推测并行模型因其低成本,高效率,灵活性和可伸缩性而成为研究重点。在基于软件的推测并行执行模型下,来宾程序的性能与该模型的推测准确性,控制开销和回滚开销密切相关。在本文中,我们首先分析了常规的推测并行模型,并提出了其对总开销的期望的解析模型,然后基于该解析模型对常规模型进行了优化,最后提出了一种新的推测并行模型HEUSPEC。 HEUSPEC模型包括三种关键技术,即启发式值预测,基于值的正确性检查和动态任务粒度调整。我们已经用ANSI C语言实现了模型的运行时系统。实验结果表明,当深度等于3时,HEUSPEC模型的平均加速比达到2.20(比常规模型高15%),而当推测深度相等时,平均加速比达到4.51(比常规模型高12%)。到7。此外,它还具有良好的可伸缩性和较低的内存成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号