首页> 美国卫生研究院文献>other >A Gauss-Seidel Iteration Scheme for Reference-Free 3-D Histological Image Reconstruction
【2h】

A Gauss-Seidel Iteration Scheme for Reference-Free 3-D Histological Image Reconstruction

机译:无参考3-D组织学图像重建的高斯-赛德尔迭代方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Three-dimensional (3-D) reconstruction of histological slice sequences offers great benefits in the investigation of different morphologies. It features very high-resolution which is still unmatched by in-vivo 3-D imaging modalities, and tissue staining further enhances visibility and contrast. One important step during reconstruction is the reversal of slice deformations introduced during histological slice preparation, a process also called image unwarping. Most methods use an external reference, or rely on conservative stopping criteria during the unwarping optimization to prevent straightening of naturally curved morphology. Our approach shows that the problem of unwarping is based on the superposition of low-frequency anatomy and high-frequency errors. We present an iterative scheme that transfers the ideas of the Gauss-Seidel method to image stacks to separate the anatomy from the deformation. In particular, the scheme is universally applicable without restriction to a specific unwarping method, and uses no external reference. The deformation artifacts are effectively reduced in the resulting histology volumes, while the natural curvature of the anatomy is preserved. The validity of our method is shown on synthetic data, simulated histology data using a CT data set and real histology data. In the case of the simulated histology where the ground truth was known, the mean Target Registration Error (TRE) between the unwarped and original volume could be reduced to less than 1 pixel on average after 6 iterations of our proposed method.
机译:组织切片序列的三维(3-D)重建在不同形态的研究中提供了很大的好处。它具有非常高的分辨率,这仍然是体内3-D成像方式所无法比拟的,并且组织染色进一步增强了可见性和对比度。重建过程中的一个重要步骤是逆转组织切片准备过程中引入的切片变形,这一过程也称为图像未变形。大多数方法使用外部参考,或在不变形优化过程中依靠保守的停止准则来防止自然弯曲的形态变直。我们的方法表明,翘曲问题是基于低频解剖结构和高频误差的叠加。我们提出了一种迭代方案,该方案将Gauss-Seidel方法的思想转移到图像堆栈,以使解剖结构与变形分离。特别地,该方案是普遍适用的,而不受限于特定的变形方法,并且不使用外部参考。有效地减少了生成的组织学体积中的变形伪影,同时保留了解剖结构的自然曲率。我们的方法的有效性在合成数据,使用CT数据集的模拟组织学数据和真实组织学数据上得到了证明。在已知基本事实的模拟组织学情况下,经过6次迭代后,未变形和原始体积之间的平均目标配准误差(TRE)可以平均减少到不到1个像素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号