首页> 美国卫生研究院文献>other >Improving the use of principal component analysis to reduce physiological noise and motion artifacts to increase the sensitivity of task-based fMRI
【2h】

Improving the use of principal component analysis to reduce physiological noise and motion artifacts to increase the sensitivity of task-based fMRI

机译:改进主成分分析的使用以减少生理噪声和运动伪影以提高基于任务的功能磁共振成像的敏感性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundFunctional magnetic resonance imaging (fMRI) time series are subject to corruption by many noise sources, especially physiological noise and motion. Researchers have developed many methods to reduce physiological noise, including RETROICOR, which retroactively removes cardiac and respiratory waveforms collected during the scan, and CompCor, which applies principal components analysis (PCA) to remove physiological noise components without any physiological monitoring during the scan.
机译:背景功能磁共振成像(fMRI)时间序列受许多噪声源(尤其是生理噪声和运动)的破坏。研究人员已经开发出许多降低生理噪声的方法,包括RETROICOR(可追溯性地删除扫描期间收集的心脏和呼吸波形),以及CompCor(可应用主成分分析(PCA)来删除生理噪声成分,而无需在扫描期间进行任何生理监测)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号