首页> 美国卫生研究院文献>other >Enhancing In Silico Protein-Based Vaccine Discovery for Eukaryotic Pathogens Using Predicted Peptide-MHC Binding and Peptide Conservation Scores
【2h】

Enhancing In Silico Protein-Based Vaccine Discovery for Eukaryotic Pathogens Using Predicted Peptide-MHC Binding and Peptide Conservation Scores

机译:使用预测的肽-MHC结合和肽保守性分数增强基于真核生物病原的基于硅蛋白的疫苗发现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Given thousands of proteins constituting a eukaryotic pathogen, the principal objective for a high-throughput in silico vaccine discovery pipeline is to select those proteins worthy of laboratory validation. Accurate prediction of T-cell epitopes on protein antigens is one crucial piece of evidence that would aid in this selection. Prediction of peptides recognised by T-cell receptors have to date proved to be of insufficient accuracy. The in silico approach is consequently reliant on an indirect method, which involves the prediction of peptides binding to major histocompatibility complex (MHC) molecules. There is no guarantee nevertheless that predicted peptide-MHC complexes will be presented by antigen-presenting cells and/or recognised by cognate T-cell receptors. The aim of this study was to determine if predicted peptide-MHC binding scores could provide contributing evidence to establish a protein’s potential as a vaccine. Using T-Cell MHC class I binding prediction tools provided by the Immune Epitope Database and Analysis Resource, peptide binding affinity to 76 common MHC I alleles were predicted for 160 Toxoplasma gondii proteins: 75 taken from published studies represented proteins known or expected to induce T-cell immune responses and 85 considered less likely vaccine candidates. The results show there is no universal set of rules that can be applied directly to binding scores to distinguish a vaccine from a non-vaccine candidate. We present, however, two proposed strategies exploiting binding scores that provide supporting evidence that a protein is likely to induce a T-cell immune response–one using random forest (a machine learning algorithm) with a 72% sensitivity and 82.4% specificity and the other, using amino acid conservation scores with a 74.6% sensitivity and 70.5% specificity when applied to the 160 benchmark proteins. More importantly, the binding score strategies are valuable evidence contributors to the overall in silico vaccine discovery pool of evidence.
机译:考虑到成千上万种构成真核生物病原体的蛋白质,高通量计算机疫苗开发流程的主要目标是选择值得实验室验证的蛋白质。蛋白质抗原上T细胞表位的准确预测是有助于这一选择的重要证据之一。迄今为止,已经证明T细胞受体识别的肽的预测准确性不足。因此,计算机方法依赖于间接方法,该方法涉及预测与主要组织相容性复合物(MHC)分子结合的肽。然而,不能保证预测的肽-MHC复合物将由抗原呈递细胞呈递和/或由同源T细胞受体识别。这项研究的目的是确定预测的肽-MHC结合分数是否可以提供有助于建立蛋白质作为疫苗潜力的证据。使用免疫表位数据库和分析资源提供的T细胞MHC I类结合预测工具,可预测160种弓形虫蛋白与76个常见MHC I等位基因的肽结合亲和力:从已发表的研究中选取75种代表已知或预期诱导T的蛋白-细胞免疫反应和85种被认为不太可能的候选疫苗。结果表明,没有一套通用的规则可直接应用于结合分数以区分疫苗和非疫苗候选物。但是,我们提出了两种利用结合分数的拟议策略,这些策略提供了支持性证据,表明一种蛋白质可能会诱导T细胞免疫反应-一种是使用随机森林(机器学习算法)以72%的敏感性和82.4%的特异性和另一种方法是,将氨基酸保守性评分应用于160种基准蛋白时灵敏度为74.6%,特异性为70.5%。更重要的是,结合评分策略是整个计算机疫苗发现证据的有价值的证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号