首页> 美国卫生研究院文献>other >When 1 + 1 2: Nanostructured composites for hard tissue engineering applications
【2h】

When 1 + 1 2: Nanostructured composites for hard tissue engineering applications

机译:当1 + 1 2:用于硬组织工程应用的纳米结构复合材料

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multicomponent, synergistic and multifunctional nanostructures have taken over the spotlight in the realm of biomedical nanotechnologies. The most prospective materials for bone regeneration today are almost exclusively composites comprising two or more components that compensate for the shortcomings of each one of them alone. This is quite natural in view of the fact that all hard tissues in the human body, except perhaps the tooth enamel, are composite nanostructures. This review article highlights some of the most prospective breakthroughs made in this research direction, with the hard tissues in main focus being those comprising bone, tooth cementum, dentin and enamel. The major obstacles to creating collagen/apatite composites modeled after the structure of bone are mentioned, including the immunogenicity of xenogeneic collagen and continuously failing attempts to replicate the biomineralization process in vitro. Composites comprising a polymeric component and calcium phosphate are discussed in light of their ability to emulate the soft/hard composite structure of bone. Hard tissue engineering composites created using hard material components other than calcium phosphates, including silica, metals and several types of nanotubes, are also discoursed on, alongside additional components deliverable using these materials, such as cells, growth factors, peptides, antibiotics, antiresorptive and anabolic agents, pharmacokinetic conjugates and various cell-specific targeting moieties. It is concluded that a variety of hard tissue structures in the body necessitates a similar variety of biomaterials for their regeneration. The ongoing development of nanocomposites for bone restoration will result in smart, theranostic materials, capable of acting therapeutically in direct feedback with the outcome of in situ disease monitoring at the cellular and subcellular scales. Progress in this research direction is expected to take us to the next generation of biomaterials, designed with the purpose of fulfilling Daedalus’ dream - not restoring the tissues, but rather augmenting them.
机译:多组分,协同和多功能纳米结构已成为生物医学纳米技术领域的关注焦点。当今,用于骨再生的最有前景的材料几乎完全是包含两种或多种成分的复合材料,这些成分可以弥补其中每种成分的不足。考虑到人体中除牙齿珐琅质以外的所有硬组织都是复合纳米结构这一事实,这是很自然的。这篇综述文章重点介绍了在该研究方向上取得的一些最有前景的突破,其中主要的硬组织是包括骨骼,牙骨质,牙本质和牙釉质的组织。提到了创建按照骨骼结构建模的胶原蛋白/磷灰石复合材料的主要障碍,包括异种胶原蛋白的免疫原性以及在体外复制生物矿化过程的尝试不断失败。鉴于包含聚合物成分和磷酸钙的复合材料模仿骨骼的软/硬复合结构的能力,对它们进行了讨论。还讨论了使用除磷酸钙以外的硬质材料成分(包括二氧化硅,金属和几种纳米管)制成的硬质组织工程复合材料,以及使用这些材料可传递的其他成分,例如细胞,生长因子,肽,抗生素,抗吸收性和合成代谢剂,药代动力学缀合物和各种细胞特异性靶向部分。结论是,体内的各种硬组织结构需要类似的各种生物材料来再生。用于骨修复的纳米复合材料的不断发展将产生智能的治疗材料,能够在细胞和亚细胞范围内对原位疾病进行监测的结果中,以直接反馈的方式进行治疗。该研究方向的进展有望将我们带入下一代生物材料,其目的是实现Daedalus的梦想-不恢复组织,而是增强它们。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号