首页> 美国卫生研究院文献>other >Surpassing Humans and Computers with JellyBean: Crowd-Vision-Hybrid Counting Algorithms
【2h】

Surpassing Humans and Computers with JellyBean: Crowd-Vision-Hybrid Counting Algorithms

机译:用JellyBean超越人和计算机:人群视觉混合计数算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Counting objects is a fundamental image processisng primitive, and has many scientific, health, surveillance, security, and military applications. Existing supervised computer vision techniques typically require large quantities of labeled training data, and even with that, fail to return accurate results in all but the most stylized settings. Using vanilla crowd-sourcing, on the other hand, can lead to significant errors, especially on images with many objects. In this paper, we present our JellyBean suite of algorithms, that combines the best of crowds and computer vision to count objects in images, and uses judicious decomposition of images to greatly improve accuracy at low cost. Our algorithms have several desirable properties: (i) they are theoretically optimal or near-optimal, in that they ask as few questions as possible to humans (under certain intuitively reasonable assumptions that we justify in our paper experimentally); (ii) they operate under stand-alone or hybrid modes, in that they can either work independent of computer vision algorithms, or work in concert with them, depending on whether the computer vision techniques are available or useful for the given setting; (iii) they perform very well in practice, returning accurate counts on images that no individual worker or computer vision algorithm can count correctly, while not incurring a high cost.
机译:计数对象是图像处理的基本原语,具有许多科学,健康,监视,安全和军事应用。现有的受监督的计算机视觉技术通常需要大量带标签的训练数据,即使如此,除了最传统的设置之外,其他方法都无法返回准确的结果。另一方面,使用原始众包可能会导致重大错误,尤其是在包含许多对象的图像上。在本文中,我们介绍了JellyBean算法套件,该套件结合了最佳的人群和计算机视觉来对图像中的对象进行计数,并通过明智地分解图像来以低成本大大提高准确性。我们的算法具有几个理想的特性:(i)从理论上说是最优的或接近最优的,因为它们向人类提出的问题越少(在我们通过实验证明的某些直观合理的假设下); (ii)它们在独立或混合模式下运行,因为它们可以独立于计算机视觉算法工作,也可以与它们协同工作,具体取决于计算机视觉技术是否可用于给定环境或对特定环境有用; (iii)它们在实践中表现非常出色,可以对没有工人或计算机视觉算法可以正确计数的图像返回准确的计数,同时不会产生高昂的成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号