首页> 美国卫生研究院文献>other >Beyond Classification: Structured Regression for Robust Cell Detection Using Convolutional Neural Network
【2h】

Beyond Classification: Structured Regression for Robust Cell Detection Using Convolutional Neural Network

机译:超越分类:使用卷积神经网络进行结构稳健的细胞检测的回归

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Robust cell detection serves as a critical prerequisite for many biomedical image analysis applications. In this paper, we present a novel convolutional neural network (CNN) based structured regression model, which is shown to be able to handle touching cells, inhomogeneous background noises, and large variations in sizes and shapes. The proposed method only requires a few training images with weak annotations (just one click near the center of the object). Given an input image patch, instead of providing a single class label like many traditional methods, our algorithm will generate the structured outputs (referred to as proximity patches). These proximity patches, which exhibit higher values for pixels near cell centers, will then be gathered from all testing image patches and fused to obtain the final proximity map, where the maximum positions indicate the cell centroids. The algorithm is tested using three data sets representing different image stains and modalities. The comparative experiments demonstrate the superior performance of this novel method over existing state-of-the-art.
机译:可靠的细胞检测是许多生物医学图像分析应用程序的关键先决条件。在本文中,我们提出了一种基于卷积神经网络(CNN)的新型结构化回归模型,该模型能够处理触摸单元,不均匀的背景噪声以及尺寸和形状的较大差异。所提出的方法仅需要一些带有弱注释的训练图像(只需在对象中心附近单击一下即可)。给定一个输入图像补丁,我们的算法将生成结构化的输出(称为邻近补丁),而不是像许多传统方法那样提供单个类别标签。然后,将从所有测试图像补丁中收集这些接近补丁,这些接近补丁对单元中心附近的像素显示较高的值,并融合以获得最终的接近图,其中最大位置表示细胞质心。使用代表不同图像污点和模态的三个数据集对该算法进行了测试。对比实验表明,该新方法优于现有的最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号