首页> 美国卫生研究院文献>other >Elastomeric Free-Form Blood Vessels for Interconnecting Organs on Chip Systems
【2h】

Elastomeric Free-Form Blood Vessels for Interconnecting Organs on Chip Systems

机译:用于连接片上系统的弹性自由形血管

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Conventional blood vessel-on-a-chip models are typically based on microchannel-like structures enclosed within bulk elastomers such as polydimethylsiloxane (PDMS). However, these bulk vascular models largely function as individual platforms and exhibit limited flexibility particularly when used in conjunction with other organ modules. Oftentimes lengthy connectors and/or tubes are still needed to interface multiple chips, resulting in a large waste volume counterintuitive to the miniaturized nature of the organs-on-chips. In this work, we report the development of a novel form of vascular module based on PDMS hollow tubes, which closely emulates the morphology and properties of the human blood vessels to integrate multiple organ-on-chips. Specifically, we present two templating strategies to fabricate hollow PDMS tubes with adjustable diameters and wall thicknesses, where metal rods or airflow were employed as the inner templates, while plastic tubes were used as the outer template. The PDMS tubes could then be functionalized by human umbilical vein endothelial cells (HUVECs) in their interior surfaces to further construct the elastomeric biomimetic blood vessels. The endothelium developed biofunctionality as demonstrated by the expression of endothelial biomarker CD31 as well as dose-dependent responses in the secretion of von Willebrand factor and nitric oxide upon treatment with pharmaceutical compounds. We believe that, with their clear advantages including high optical transparency, gas permeability, and tunable elasticity matching those of native blood vessels, these free-form PDMS vascular modules can supplement the bulk vascular organoids and likely replace the inert plastic tubes in integrating multiple organoids into a single microfluidic circuitry.
机译:常规的单芯片血管模型通常基于封闭在诸如聚二甲基硅氧烷(PDMS)的弹性体中的微通道状结构。然而,这些大血管模型在很大程度上起着个体平台的作用,并且显示出有限的灵活性,特别是当与其他器官模块结合使用时。通常,仍然需要较长的连接器和/或管子来连接多个芯片,从而导致大量的废料量与芯片上器官的微型化性质背道而驰。在这项工作中,我们报告了一种基于PDMS中空管的新型血管模块的开发,该模型紧密模拟了人类血管的形态和特性,以集成多个器官芯片。具体而言,我们提出了两种模板化策略来制造直径和壁厚可调的中空PDMS管,其中金属棒或气流用作内部模板,而塑料管用作外部模板。然后,PDMS管可通过其内表面的人脐静脉内皮细胞(HUVEC)功能化,以进一步构建弹性仿生血管。经内皮生物标志物CD31的表达以及用药物化合物处理后,von Willebrand因子和一氧化氮的分泌具有剂量依赖性反应,证明内皮具有生物功能。我们相信,这些自由形式的PDMS血管模块具有明显的优势,包括高的光学透明性,透气性和与天然血管相匹配的可调节的弹性,可以补充大量的血管类器官,并有可能取代惰性塑料管来整合多个类器官进入单个微流体电路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号