首页> 美国卫生研究院文献>other >A scoring metric for multivariate data for reproducibility analysis using chemometric methods
【2h】

A scoring metric for multivariate data for reproducibility analysis using chemometric methods

机译:使用化学计量学方法进行可重复性分析的多元数据的评分指标

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Process quality control and reproducibility in emerging measurement fields such as metabolomics is normally assured by interlaboratory comparison testing. As a part of this testing process, spectral features from a spectroscopic method such as nuclear magnetic resonance (NMR) spectroscopy are attributed to particular analytes within a mixture, and it is the metabolite concentrations that are returned for comparison between laboratories. However, data quality may also be assessed directly by using binned spectral data before the time-consuming identification and quantification. Use of the binned spectra has some advantages, including preserving information about trace constituents and enabling identification of process difficulties. In this paper, we demonstrate the use of binned NMR spectra to conduct a detailed interlaboratory comparison and composition analysis. Spectra of synthetic and biologically-obtained metabolite mixtures, taken from a previous interlaboratory study, are compared with cluster analysis using a variety of distance and entropy metrics. The individual measurements are then evaluated based on where they fall within their clusters, and a laboratory-level scoring metric is developed, which provides an assessment of each laboratory’s individual performance.
机译:通常通过实验室间的对比测试来确保新出现的测量领域(如代谢组学)中的过程质量控制和重现性。作为该测试过程的一部分,来自光谱方法(如核磁共振(NMR)光谱法)的光谱特征归因于混合物中的特定分析物,代谢物浓度返回以供实验室之间进行比较。但是,在耗时的识别和量化之前,也可以通过使用合并的光谱数据直接评估数据质量。使用合并后的光谱具有一些优势,包括保留有关痕量成分的信息并能够识别过程中的困难。在本文中,我们演示了使用合并的NMR光谱进行详细的实验室间比较和组成分析。将来自先前实验室间研究的合成和生物获得的代谢产物混合物的光谱与使用各种距离和熵度量的聚类分析进行比较。然后,根据单个测量值在群集中的位置进行评估,并开发了实验室级别的评分标准,该度量标准可以评估每个实验室的单个性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号