首页> 美国卫生研究院文献>other >Predicting the HMA-LMA Status in Marine Sponges by Machine Learning
【2h】

Predicting the HMA-LMA Status in Marine Sponges by Machine Learning

机译:通过机器学习预测海洋海绵中HMA-LMA的状态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The dichotomy between high microbial abundance (HMA) and low microbial abundance (LMA) sponges has been observed in sponge-microbe symbiosis, although the extent of this pattern remains poorly unknown. We characterized the differences between the microbiomes of HMA (n = 19) and LMA (n = 17) sponges (575 specimens) present in the Sponge Microbiome Project. HMA sponges were associated with richer and more diverse microbiomes than LMA sponges, as indicated by the comparison of alpha diversity metrics. Microbial community structures differed between HMA and LMA sponges considering Operational Taxonomic Units (OTU) abundances and across microbial taxonomic levels, from phylum to species. The largest proportion of microbiome variation was explained by the host identity. Several phyla, classes, and OTUs were found differentially abundant in either group, which were considered “HMA indicators” and “LMA indicators.” Machine learning algorithms (classifiers) were trained to predict the HMA-LMA status of sponges. Among nine different classifiers, higher performances were achieved by Random Forest trained with phylum and class abundances. Random Forest with optimized parameters predicted the HMA-LMA status of additional 135 sponge species (1,232 specimens) without a priori knowledge. These sponges were grouped in four clusters, from which the largest two were composed of species consistently predicted as HMA (n = 44) and LMA (n = 74). In summary, our analyses shown distinct features of the microbial communities associated with HMA and LMA sponges. The prediction of the HMA-LMA status based on the microbiome profiles of sponges demonstrates the application of machine learning to explore patterns of host-associated microbial communities.
机译:在海绵-微生物共生中,已观察到高微生物丰度(HMA)和低微生物丰度(LMA)海绵之间的二分法,尽管这种模式的程度仍然鲜为人知。我们表征了海绵微生物组项目中存在的HMA(n = 19)和LMA(n = 17)海绵(575个标本)的微生物群落之间的差异。通过比较Alpha多样性指标可以看出,HMA海绵比LMA海绵具有更丰富,更多样化的微生物组。 HMA和LMA海绵之间的微生物群落结构有所不同,这要考虑到操作分类单位(OTU)的丰富程度以及整个微生物分类水平(从门到物种)。微生物组变异的最大比例由宿主身份解释。两组中的几个门,类别和OTU均差异丰富,被视为“ HMA指标”和“ LMA指标”。训练机器学习算法(分类器)以预测海绵的HMA-LMA状态。在9个不同的分类器中,随机森林经过门类和类别丰度训练,取得了更高的性能。具有优化参数的随机森林在没有先验知识的情况下预测了另外135个海绵物种(1,232个样本)的HMA-LMA状态。这些海绵分为四个簇,其中最大的两个簇由一致预测为HMA(n = 44)和LMA(n = 74)的物种组成。总而言之,我们的分析显示了与HMA和LMA海绵相关的微生物群落的独特特征。基于海绵的微生物组概况对HMA-LMA状态的预测证明了机器学习在探索宿主相关微生物群落模式方面的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号