首页> 美国卫生研究院文献>other >Doping of Green Fluorescent Protein into Superfluid Helium Droplets: Size and Velocity of Doped Droplets
【2h】

Doping of Green Fluorescent Protein into Superfluid Helium Droplets: Size and Velocity of Doped Droplets

机译:将绿色荧光蛋白掺杂到超流氦滴中:掺杂滴的大小和速度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We report doping of green fluorescent protein from an electrospray ionization (ESI) source into superfluid helium droplets. From analyses of the time profiles of the doped droplets, we identify two distinct groups of droplets. The faster group has a smaller average size, on the order of 106 helium atoms/droplet, and the slower group is much larger, by at least an order of magnitude. The relative populations of these two groups depend on the temperature of the droplet source: from 11 K to 5 K, the signal intensity of the slower droplet group gradually increases, from near the detection limit to comparable to that of the faster group. We postulate that the smaller droplets are formed via condensation of gaseous helium upon expansion from the pulsed valve, while the larger droplets develop from fragmentation of ejected liquid helium. Our results on the size and velocity of the condensation peak at higher source temperatures (> 7 K) agree with previous reports, but those at lower temperatures (< 7 K) seem to be off. We attribute this discrepancy to the masking effect of the exceedingly large droplets from the fragmentation peak in previous measurements of droplet sizes. Within the temperature range of our investigation, although the expansion condition changes from subcritical to supercritical, there is no abrupt change in either the velocity distribution or the size distribution of the condensation peak, and the most salient effect is in the increasing intensity of the fragmentation peak. The absolute doping efficiency, as expressed by the ratio of ion doped droplets over the total number of ions from the ESI source, is on the order of 10−4, while only hundreds of doped ions have been detected. Further improvements in the ESI source are key to extending the technology for future experiments. On the other hand, the separation of the two groups of droplets in velocity is beneficial for size selection of only the smaller droplets for future experiments of electron diffraction.
机译:我们报告从电喷雾电离(ESI)来源的绿色荧光蛋白到超流氦滴的掺杂。通过分析掺杂液滴的时间分布,我们可以确定两组不同的液滴。较快的基团具有较小的平均尺寸,约为10 6 氦原子/液滴,而较慢的基团则要大得多,至少至少一个数量级。这两组的相对种群取决于液滴来源的温度:从11 K到5 K,较慢的液滴组的信号强度逐渐增加,从接近检测极限到与较快的组相当。我们假设较小的液滴是由脉冲阀膨胀时气态氦的冷凝形成的,而较大的液滴则是由喷射出的液态氦的碎裂形成的。我们在较高的源温度(> 7 K)下对凝结峰的大小和速度的结果与以前的报告一致,但在较低温度(<7 K)下的结果似乎不对。我们将这种差异归因于之前的液滴尺寸测量中来自碎裂峰的过大液滴的掩盖效果。在我们研究的温度范围内,尽管膨胀条件从亚临界变为超临界,但凝结峰的速度分布或大小分布都没有突然变化,最显着的影响是破碎强度的增加峰。绝对掺杂效率用离子掺杂液滴占ESI源离子总数的比例表示,约为10 -4 ,而仅检测到数百种掺杂离子。 ESI源的进一步改进是将技术扩展到未来实验的关键。另一方面,两组液滴的速度分离有利于仅较小液滴的尺寸选择,以用于未来的电子衍射实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号