首页> 美国卫生研究院文献>other >Mining co-occurrence and sequence patterns from cancer diagnoses in New York State
【2h】

Mining co-occurrence and sequence patterns from cancer diagnoses in New York State

机译:纽约州癌症诊断中的共现和序列模式挖掘

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The goal of this study is to discover disease co-occurrence and sequence patterns from large scale cancer diagnosis histories in New York State. In particular, we want to identify disparities among different patient groups. Our study will provide essential knowledge for clinical researchers to further investigate comorbidities and disease progression for improving the management of multiple diseases. We used inpatient discharge and outpatient visit records from the New York State Statewide Planning and Research Cooperative System (SPARCS) from 2011-2015. We grouped each patient’s visit history to generate diagnosis sequences for seven most popular cancer types. We performed frequent disease co-occurrence mining using the Apriori algorithm, and frequent disease sequence patterns discovery using the cSPADE algorithm. Different types of cancer demonstrated distinct patterns. Disparities of both disease co-occurrence and sequence patterns were observed from patients within different age groups. There were also considerable disparities in disease co-occurrence patterns with respect to different claim types (i.e., inpatient, outpatient, emergency department and ambulatory surgery). Disparities regarding genders were mostly found where the cancer types were gender specific. Supports of most patterns were usually higher for males than for females. Compared with secondary diagnosis codes, primary diagnosis codes can convey more stable results. Two disease sequences consisting of the same diagnoses but in different orders were usually with different supports. Our results suggest that the methods adopted can generate potentially interesting and clinically meaningful disease co-occurrence and sequence patterns, and identify disparities among various patient groups. These patterns could imply comorbidities and disease progressions.
机译:这项研究的目的是从纽约州的大规模癌症诊断历史中发现疾病的同时发生和序列模式。特别是,我们希望确定不同患者群体之间的差异。我们的研究将为临床研究人员提供必要的知识,以进一步研究合并症和疾病进展,以改善多种疾病的管理。我们使用了2011-2015年纽约州全州计划与研究合作系统(SPARCS)的住院病人出院和门诊就诊记录。我们将每位患者的就诊历史分组,以生成针对7种最常见癌症类型的诊断序列。我们使用Apriori算法进行了频繁的疾病共现挖掘,并使用cSPADE算法进行了频繁的疾病序列模式发现。不同类型的癌症表现出不同的模式。从不同年龄组的患者中观察到疾病共生和序列模式的差异。就不同索赔类型(即住院,门诊,急诊科和门诊手术)而言,疾病共存模式也存在很大差异。关于性别的差异主要在癌症类型是针对性别的地方发现。男性对大多数模式的支持通常高于女性。与第二诊断代码相比,第一诊断代码可以传达更稳定的结果。由相同诊断但顺序不同的两个疾病序列通常具有不同的支持。我们的结果表明,所采用的方法可以产生潜在的有趣且具有临床意义的疾病共现和序列模式,并确定各种患者群体之间的差异。这些模式可能暗示合并症和疾病进展。

著录项

  • 期刊名称 other
  • 作者

    Yu Wang; Wei Hou; Fusheng Wang;

  • 作者单位
  • 年(卷),期 -1(13),4
  • 年度 -1
  • 页码 e0194407
  • 总页数 16
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号