首页> 美国卫生研究院文献>other >The Fusarium graminearum Histone Acetyltransferases Are Important for Morphogenesis DON Biosynthesis and Pathogenicity
【2h】

The Fusarium graminearum Histone Acetyltransferases Are Important for Morphogenesis DON Biosynthesis and Pathogenicity

机译:禾谷镰刀菌组蛋白乙酰转移酶对于形态发生DON生物合成和致病性很重要

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Post-translational modifications of chromatin structure by histone acetyltransferase (HATs) play a central role in the regulation of gene expression and various biological processes in eukaryotes. Although HAT genes have been studied in many fungi, few of them have been functionally characterized. In this study, we identified and characterized four putative HATs (FgGCN5, FgRTT109, FgSAS2, FgSAS3) in the plant pathogenic ascomycete Fusarium graminearum, the causal agent of Fusarium head blight of wheat and barley. We replaced the genes and all mutant strains showed reduced growth of F. graminearum. The ΔFgSAS3 and ΔFgGCN5 mutant increased sensitivity to oxidative and osmotic stresses. Additionally, ΔFgSAS3 showed reduced conidia sporulation and perithecium formation. Mutant ΔFgGCN5 was unable to generate any conidia and lost its ability to form perithecia. Our data showed also that FgSAS3 and FgGCN5 are pathogenicity factors required for infecting wheat heads as well as tomato fruits. Importantly, almost no Deoxynivalenol (DON) was produced either in ΔFgSAS3 or ΔFgGCN5 mutants, which was consistent with a significant downregulation of TRI genes expression. Furthermore, we discovered for the first time that FgSAS3 is indispensable for the acetylation of histone site H3K4, while FgGCN5 is essential for the acetylation of H3K9, H3K18, and H3K27. H3K14 can be completely acetylated when FgSAS3 and FgGCN5 were both present. The RNA-seq analyses of the two mutant strains provide insight into their functions in development and metabolism. Results from this study clarify the functional divergence of HATs in F. graminearum, and may provide novel targeted strategies to control secondary metabolite expression and infections of F. graminearum.
机译:组蛋白乙酰转移酶(HATs)对染色质结构的翻译后修饰在真核生物的基因表达和各种生物学过程的调控中起着核心作用。尽管已经在许多真菌中研究了HAT基因,但很少有人对其功能进行过表征。在这项研究中,我们鉴定并鉴定了植物病原体灰霉镰刀菌(Fusarium graminearum)中的四个推定的HAT(FgGCN5,FgRTT109,FgSAS2,FgSAS3),这是小麦和大麦镰刀菌病的致病因子。我们替换了基因,所有突变菌株均显示了禾谷镰刀菌的生长减少。 ΔFgSAS3和ΔFgGCN5突变体增加了对氧化和渗透胁迫的敏感性。另外,ΔFgSAS3显示出分生孢子孢子形成和皮膜形成减少。突变体ΔFgGCN5无法产生任何分生孢子,并丧失了形成皮膜的能力。我们的数据还表明,FgSAS3和FgGCN5是感染小麦头和番茄果实所需的致病因子。重要的是,在ΔFgSAS3或ΔFgGCN5突变体中几乎没有产生脱氧雪腐烯醇(DON),这与TRI基因表达的显着下调相一致。此外,我们首次发现FgSAS3对于组蛋白位点H3K4的乙酰化必不可少,而FgGCN5对于H3K9,H3K18和H3K27的乙酰化必不可少。当同时存在FgSAS3和FgGCN5时,H3K14可以被完全乙酰化。两种突变菌株的RNA-seq分析提供了对其在发育和代谢中的功能的了解。这项研究的结果阐明了HATs在 F中的功能差异。禾本科,并可能提供新颖的靶向策略来控制次生代谢产物的表达和 F的感染。禾本科

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号