首页> 美国卫生研究院文献>Journal of Healthcare Engineering >Research on Improved Depth Belief Network-Based Prediction of Cardiovascular Diseases
【2h】

Research on Improved Depth Belief Network-Based Prediction of Cardiovascular Diseases

机译:基于改进的深度信念网络的心血管疾病预测研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quantitative analysis and prediction can help to reduce the risk of cardiovascular disease. Quantitative prediction based on traditional model has low accuracy. The variance of model prediction based on shallow neural network is larger. In this paper, cardiovascular disease prediction model based on improved deep belief network (DBN) is proposed. Using the reconstruction error, the network depth is determined independently, and unsupervised training and supervised optimization are combined. It ensures the accuracy of model prediction while guaranteeing stability. Thirty experiments were performed independently on the Statlog (Heart) and Heart Disease Database data sets in the UCI database. Experimental results showed that the mean of prediction accuracy was 91.26% and 89.78%, respectively. The variance of prediction accuracy was 5.78 and 4.46, respectively.
机译:定量分析和预测可以帮助降低心血管疾病的风险。传统模型的定量预测精度较低。基于浅层神经网络的模型预测方差较大。本文提出了一种基于改进的深度信念网络(DBN)的心血管疾病预测模型。使用重构误差,可独立确定网络深度,并将无监督训练和有监督优化相结合。它可以在确保稳定性的同时确保模型预测的准确性。在UCI数据库中的Statlog(心脏)和心脏病数据库数据集上独立进行了30个实验。实验结果表明,预测准确度的平均值分别为91.26%和89.78%。预测准确性的方差分别为5.78和4.46。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号