首页> 美国卫生研究院文献>Nanoscale Research Letters >Drying nano particles solution on an oscillating tip at an air liquid interface: what we can learn what we can do
【2h】

Drying nano particles solution on an oscillating tip at an air liquid interface: what we can learn what we can do

机译:在气液界面的振荡尖端上干燥纳米颗粒溶液:我们可以学到什么可以做什么

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Evaporation of fluid at micro and nanometer scale may be used to self-assemble nanometre-sized particles in suspension. Evaporating process can be used to gently control flow in micro and nanofluidics, thus providing a potential mean to design a fine pattern onto a surface or to functionalize a nanoprobe tip. In this paper, we present an original experimental approach to explore this open and rather virgin domain. We use an oscillating tip at an air liquid interface with a controlled dipping depth of the tip within the range of the micrometer. Also, very small dipping depths of a few ten nanometers were achieved with multi walls carbon nanotubes glued at the tip apex. The liquid is an aqueous solution of functionalized nanoparticles diluted in water. Evaporation of water is the driving force determining the arrangement of nanoparticles on the tip. The results show various nanoparticles deposition patterns, from which the deposits can be classified in two categories. The type of deposit is shown to be strongly dependent on whether or not the triple line is pinned and of the peptide coating of the gold nanoparticle. In order to assess the classification, companion dynamical studies of nanomeniscus and related dissipation processes involved with thinning effects are presented.
机译:微米和纳米级的流体蒸发可用于自组装悬浮液中的纳米级颗粒。蒸发过程可用于温和地控制微流体和纳米流体中的流动,从而提供一种在表面上设计精细图案或使纳米探针尖端功能化的潜在手段。在本文中,我们提出了一种原始的实验方法来探索这个开放而原始的领域。我们在气液界面处使用振荡式尖端,尖端的浸入深度控制在微米范围内。同样,通过在尖端处胶粘多壁碳纳米管,可以实现非常小的几十纳米的浸入深度。液体是在水中稀释的功能化纳米颗粒的水溶液。水的蒸发是决定纳米颗粒在尖端上排列的驱动力。结果显示了各种纳米颗粒沉积模式,从中可以将沉积物分为两类。显示出沉积物的类型强烈地取决于三重线是否被钉扎以及金纳米颗粒的肽涂层。为了评估分类,提出了纳米弯液面的伴随动力学研究以及与稀疏效应有关的相关耗散过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号