首页> 美国卫生研究院文献>Genome Biology and Evolution >Quantitative Residue-Level Structure–Evolution Relationships in the Yeast Membrane Proteome
【2h】

Quantitative Residue-Level Structure–Evolution Relationships in the Yeast Membrane Proteome

机译:酵母膜蛋白质组中的残留水平定量结构与进化关系。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Membrane proteins exist in distinctly different environments than do soluble proteins, resulting in differences between their respective biophysical and evolutionary properties. In comparison with soluble proteins, relatively little is known about how the unique biophysical properties of membrane proteins affect their evolutionary properties at the residue level. In particular, transmembrane (TM) regions of membrane proteins tend to be more conserved than regions outside of the membrane (extramembrane [EM] regions), but the mechanisms underlying this phenomenon are not well understood. Here, we combine homology-based high-resolution three-dimensional protein models with rigorous evolutionary rate calculations to quantitatively assess residue-level structure–evolution relationships in the yeast membrane proteome. We find that residue evolutionary rate increases linearly with decreasing residue burial, regardless of the hydrophobic or hydrophilic nature of the solvent environment. This finding supports a direct relationship between a residue’s selective constraint and the extent of its packing interactions with neighboring residues, independent of hydrophobic effects. Most importantly, for a fixed degree of burial, residues from TM regions tend to evolve more slowly than residues from EM regions. We attribute this difference to the increased importance of packing constraints and the decreased importance of hydrophobic effects in TM regions. This additional selective constraint on TM residues plays a dominant role in explaining why TM regions evolve more slowly than EM regions. In addition to revealing the universality of the linear relationship between residue burial and selective constraint across solvent environments, our work highlights the distinct residue-level evolutionary consequences imposed by the unique biophysical properties of the membrane environment.
机译:膜蛋白与可溶性蛋白存在于截然不同的环境中,从而导致它们各自的生物物理和进化特性之间存在差异。与可溶性蛋白相比,关于膜蛋白独特的生物物理特性如何影响其在残留水平上的进化特性的了解还很少。特别是,膜蛋白的跨膜(TM)区域比膜外部的区域(膜外[EM]区域)更保守,但是这种现象的机理尚不十分清楚。在这里,我们将基于同源性的高分辨率三维蛋白质模型与严格的进化速率计算相结合,以定量评估酵母膜蛋白质组中残基水平的结构-进化关系。我们发现,无论溶剂环境的疏水性或亲水性如何,残留物的演化速率都随残留物的埋入量线性增加。这一发现支持了残基的选择性约束与其与相邻残基的堆积相互作用程度之间的直接关系,而与疏水效应无关。最重要的是,对于固定的埋葬程度,TM区域的残留物比EM区域的残留物趋于缓慢发展。我们将此差异归因于堆积约束的重要性增加和TM区域疏水作用的重要性降低。 TM残基的这种附加选择性约束在解释为什么TM区域比EM区域发展得更慢方面起主要作用。除了揭示残留物埋葬和选择性约束在整个溶剂环境之间线性关系的普遍性外,我们的工作还强调了膜环境独特的生物物理特性所带来的独特的残留物级进化后果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号