首页> 美国卫生研究院文献>Nucleic Acids Research >DNA motif elucidation using belief propagation
【2h】

DNA motif elucidation using belief propagation

机译:使用信念传播阐明DNA基序

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors’ websites: e.g. .
机译:蛋白质结合微阵列(PBM)是一个高通量平台,可以全面,公正地测量蛋白质的DNA结合偏好。典型的PBM实验可以测量蛋白质与所有可能的DNA k-mers的结合信号强度(k = 8〜10);在进一步分析和应用之前,通常需要减少此类全面的结合亲和力数据并将其表示为模体模型。由于蛋白质通常可以多种模式与DNA结合,因此主要的挑战之一是将全面的亲和力数据分解为多峰基序表示。在这里,我们描述了一种使用隐马尔可夫模型(HMM)的新算法,并且可以使用信念传播来得出精确的多模态图案。我们描述了一种使用信念传播(kmerHMM)的基于HMM的方法,该方法接受并预处理PBM探针原始数据成单个k-mers的中值结合强度。对k聚体进行排序和排列以训练HMM作为基础基序表示。然后,使用信念传播从HMM中提取多个图案。 kmerHMM与其他领先方法在多个数据集上的比较证明了其有效性和独特性。尤其是,它在一半以上的数据集上均达到了最佳性能。此外,由kmerHMM衍生的多种结合模式具有生物学意义,并将有助于解释其他全基因组数据,例如从ChIP-seq生成的数据。可执行文件和源代码可在作者的网站上找到:例如。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号