首页> 美国卫生研究院文献>Advanced Science >DeepScreen: An Accurate Rapid and Anti‐Interference Screening Approach for Nanoformulated Medication by Deep Learning
【2h】

DeepScreen: An Accurate Rapid and Anti‐Interference Screening Approach for Nanoformulated Medication by Deep Learning

机译:DeepScreen:通过深度学习对纳米配方药物进行准确快速且抗干扰的筛选方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accuracy of current efficacy judgment methods for nanoformulated drug remains unstable due to the interference of nanocarriers. Herein, DeepScreen, a drug screening system utilizing convolutional neural network based on flow cytomerty single‐cell images, is introduced. Compared to existing experimental approaches, the high‐throughput system has superior precision, rapidity, and anti‐interference, and is cost‐cutting with high accuracy. First, it can resist most disturbances from manual factors of complicated evaluation progress. In addition, class activation maps generated from DeepScreen indicate that it may identify and locate the tiny variation from cell apoptosis and slight changes of cellular period caused by drug or even nanoformulated drug action at very early stages. More importantly, the excellent performance of assessment on two types of nanoformulations and fluorescent drug proves the fine generality and anti‐interference of this novel system. All these privileged performances make DeepScreen a very smart and promising system for drug detection.
机译:由于纳米载体的干扰,目前用于纳米配方药物的功效判断方法的准确性仍然不稳定。本文介绍了DeepScreen,这是一种基于卷积神经元单细胞图像的利用卷积神经网络的药物筛选系统。与现有的实验方法相比,高通量系统具有卓越的精度,快速性和抗干扰性,并且可以高精度地削减成本。首先,它可以抵御复杂的评估过程中人为因素造成的大多数干扰。此外,从DeepScreen生成的类别激活图表明,它可以在非常早期就识别并定位由药物或什至是纳米级药物作用引起的细胞凋亡和细胞周期的细微变化。更重要的是,对两种类型的纳米制剂和荧光药物的出色评估性能证明了该新型系统的优良通用性和抗干扰性。所有这些优越的性能使DeepScreen成为非常智能且很有前途的药物检测系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号