首页> 美国卫生研究院文献>Nanoscale Research Letters >Understanding the Growth Mechanism of GaN Epitaxial Layers on Mechanically Exfoliated Graphite
【2h】

Understanding the Growth Mechanism of GaN Epitaxial Layers on Mechanically Exfoliated Graphite

机译:了解机械剥离石墨上GaN外延层的生长机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite is explained in detail based on classic nucleation theory. The number of defects on the graphite surface can be increased via O-plasma treatment, leading to increased nucleation density on the graphite surface. The addition of elemental Al can effectively improve the nucleation rate, which can promote the formation of dense nucleation layers and the lateral growth of GaN epitaxial layers. The surface morphologies of the nucleation layers, annealed layers and epitaxial layers were characterized by field-emission scanning electron microscopy, where the evolution of the surface morphology coincided with a 3D-to-2D growth mechanism. High-resolution transmission electron microscopy was used to characterize the microstructure of GaN. Fast Fourier transform diffraction patterns showed that cubic phase (zinc-blend structure) GaN grains were obtained using conventional GaN nucleation layers, while the hexagonal phase (wurtzite structure) GaN films were formed using AlGaN nucleation layers. Our work opens new avenues for using highly oriented pyrolytic graphite as a substrate to fabricate transferable optoelectronic devices.
机译:基于经典的成核理论,详细解释了机械剥落石墨上的GaN外延层的生长机理。通过O-等离子体处理可以增加石墨表面上的缺陷数量,从而导致石墨表面上的成核密度增加。 Al元素的添加可以有效地提高成核速率,从而可以促进致密成核层的形成和GaN外延层的横向生长。通过场发射扫描电子显微镜对成核层,退火层和外延层的表面形貌进行了表征,其中表面形貌的演变与3D到2D的生长机理相吻合。高分辨率透射电子显微镜用于表征GaN的微观结构。快速傅里叶变换衍射图表明,使用常规GaN成核层可获得立方相(锌共混结构)GaN晶粒,而使用AlGaN成核层形成六方相(纤锌矿结构)GaN膜。我们的工作为使用高度取向的热解石墨作为衬底制造可转移的光电器件开辟了新途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号