首页> 美国卫生研究院文献>Scientific Reports >Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface
【2h】

Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface

机译:超薄坡莫合金/ PMN-PT接口上应变和电荷共介导的磁电耦合的定量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling.
机译:有望在超薄铁磁/铁电多铁异质结构中产生应变和电荷共同介导的磁电耦合,这可能导致磁电耦合显着增强。然而,观察结合的应变电荷介导的磁电耦合是具有挑战性的,并且难以定量地区分这两种磁电耦合机制。我们在这项工作中证明了,通过使用仅具有Ni0.79Fe0.21 / Cu / PMN-PT异质结构的超薄Ni0.79Fe0.21 / PMN-PT界面上的应变和表面电荷介导的磁电耦合的共存量化应变介导的磁电耦合作为对照。 NiFe / PMN-PT异质结构表现出375 effectiveOe的高压感应有效磁场变化,该变化由PMN-PT界面处的表面电荷增强。没有通过在PMN-PT界面上插入Cu层来增强电荷介导的磁电效应,有效磁场的电场修正为202 Oe。通过区分磁电耦合机制,磁性的纯表面电荷改性显示出与PMN-PT极化的强相关性。在零电场下观察到104 effectiveOe的非易失性有效磁场变化是由PMN-PT的剩余极化态引起的。超薄磁/铁电异质结构中的应变和电荷共同介导的磁电耦合可能会导致功率效率更高的非易失性磁电器件具有增强的磁电耦合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号