首页> 美国卫生研究院文献>Scientific Reports >Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning
【2h】

Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning

机译:基于片上STDP学习的尖峰神经网络基于磁隧道结的长期短期随机突触

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spiking Neural Networks (SNNs) have emerged as a powerful neuromorphic computing paradigm to carry out classification and recognition tasks. Nevertheless, the general purpose computing platforms and the custom hardware architectures implemented using standard CMOS technology, have been unable to rival the power efficiency of the human brain. Hence, there is a need for novel nanoelectronic devices that can efficiently model the neurons and synapses constituting an SNN. In this work, we propose a heterostructure composed of a Magnetic Tunnel Junction (MTJ) and a heavy metal as a stochastic binary synapse. Synaptic plasticity is achieved by the stochastic switching of the MTJ conductance states, based on the temporal correlation between the spiking activities of the interconnecting neurons. Additionally, we present a significance driven long-term short-term stochastic synapse comprising two unique binary synaptic elements, in order to improve the synaptic learning efficiency. We demonstrate the efficacy of the proposed synaptic configurations and the stochastic learning algorithm on an SNN trained to classify handwritten digits from the MNIST dataset, using a device to system-level simulation framework. The power efficiency of the proposed neuromorphic system stems from the ultra-low programming energy of the spintronic synapses.
机译:尖刺神经网络(SNN)已成为一种强大的神经形态计算范例,可以执行分类和识别任务。然而,使用标准CMOS技术实现的通用计算平台和定制硬件体系结构无法与人脑的能效媲美。因此,需要能够有效地对构成SNN的神经元和突触进行建模的新型纳米电子器件。在这项工作中,我们提出了一种由磁隧道结(MTJ)和重金属作为随机二元突触组成的异质结构。基于相互连接的神经元的尖峰活动之间的时间相关性,通过MTJ电导状态的随机切换来实现突触可塑性。另外,我们提出了一种由重要性驱动的长期短期随机突触,包括两个独特的二进制突触元件,以提高突触学习效率。我们证明了拟议的突触配置和随机学习算法在SNN上的有效性,该SNN被训练为使用设备到系统级仿真框架对来自MNIST数据集的手写数字进行分类。拟议的神经形态系统的功率效率源于自旋电子突触的超低编程能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号