首页> 外文会议>IEEE Symposium on VLSI Circuits >A 4096-Neuron 1M-Synapse 3.8PJ/SOP Spiking Neural Network with On-Chip STDP Learning and Sparse Weights in 10NM FinFET CMOS
【24h】

A 4096-Neuron 1M-Synapse 3.8PJ/SOP Spiking Neural Network with On-Chip STDP Learning and Sparse Weights in 10NM FinFET CMOS

机译:4096-Neuron 1M-Synapse 3.8PJ / SOP尖刺神经网络,具有片上STDP学习功能和稀疏权重的10NM FinFET CMOS

获取原文

摘要

A 4096-neuron, 1M-synapse SNN in 10nm FinFET CMOS achieves a peak throughput of 25.2GSOP/s at 0.9V, peak energy efficiency of 3.8pJ/SOP at 525mV, and 2.3μWeuron operation at 450mV. The SNN skips zero-valued activations for up to 9.4× lower energy. Fine-grained sparse weights reduce memory by up to 16×. On-chip STDP trains RBMs to de-noise MNIST digits and to reconstruct natural scene images with RMSE of 0.036. A 50% sparse weight MLP classifies MNIST digits with 97.9% accuracy at 1.7μJ/classification.
机译:10nm FinFET CMOS中的4096个神经元,1M突触SNN在0.9V时达到25.2GSOP / s的峰值吞吐率,在525mV时达到3.8pJ / SOP的峰值能量效率,在450mV时达到2.3μW/神经元的工作效率。 SNN跳过零值激活,最多降低了9.4倍的能量。细粒度的稀疏权重最多可将内存减少16倍。片上STDP训练RBM对MNIST数字进行消噪,并重建RMSE为0.036的自然场景图像。 50%的稀疏权重MLP以1.7μJ/分类的准确率将97.9%的MNIST数字分类。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号