...
首页> 外文期刊>Scientific reports. >Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning
【24h】

Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning

机译:基于芯片神经网络的磁隧道结基长期短期随机突触,用于芯片STDP学习

获取原文
           

摘要

Spiking Neural Networks (SNNs) have emerged as a powerful neuromorphic computing paradigm to carry out classification and recognition tasks. Nevertheless, the general purpose computing platforms and the custom hardware architectures implemented using standard CMOS technology, have been unable to rival the power efficiency of the human brain. Hence, there is a need for novel nanoelectronic devices that can efficiently model the neurons and synapses constituting an SNN. In this work, we propose a heterostructure composed of a Magnetic Tunnel Junction (MTJ) and a heavy metal as a stochastic binary synapse. Synaptic plasticity is achieved by the stochastic switching of the MTJ conductance states, based on the temporal correlation between the spiking activities of the interconnecting neurons. Additionally, we present a significance driven long-term short-term stochastic synapse comprising two unique binary synaptic elements, in order to improve the synaptic learning efficiency. We demonstrate the efficacy of the proposed synaptic configurations and the stochastic learning algorithm on an SNN trained to classify handwritten digits from the MNIST dataset, using a device to system-level simulation framework. The power efficiency of the proposed neuromorphic system stems from the ultra-low programming energy of the spintronic synapses.
机译:尖峰神经网络(SNNS)已成为一种强大的神经形态计算范例,用于执行分类和识别任务。然而,通用计算平台和使用标准CMOS技术实现的自定义硬件架构一直无法竞争人类大脑的功率效率。因此,需要一种新型纳米电子器件,其可以有效地模拟构成SNN的神经元和突触。在这项工作中,我们提出了一种由磁隧道结(MTJ)和重金属组成的异质结构,作为随机二进制突触。基于互连神经元的尖峰活性之间的时间相关性,通过MTJ电导状态的随机切换来实现突触塑性。此外,我们呈现了一种具有两个独特的二进制突触元件的重要性驱动的长期短期随机突触,以提高突触学习效率。我们展示了所提出的突触配置和随机学习算法在培训的SNN上的有效性,以便使用一个系统级仿真框架对来自Mnist DataSet进行分类的SNN培训的手写数字。所提出的神经晶体系统的功率效率源于旋转突触的超低编程能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号