首页> 美国卫生研究院文献>Scientific Reports >Multiobjective differential evolution-based multifactor dimensionality reduction for detecting gene–gene interactions
【2h】

Multiobjective differential evolution-based multifactor dimensionality reduction for detecting gene–gene interactions

机译:基于多目标差分进化的多维度降维算法用于检测基因与基因的相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Epistasis within disease-related genes (gene–gene interactions) was determined through contingency table measures based on multifactor dimensionality reduction (MDR) using single-nucleotide polymorphisms (SNPs). Most MDR-based methods use the single contingency table measure to detect gene–gene interactions; however, some gene–gene interactions may require identification through multiple contingency table measures. In this study, a multiobjective differential evolution method (called MODEMDR) was proposed to merge the various contingency table measures based on MDR to detect significant gene–gene interactions. Two contingency table measures, namely the correct classification rate and normalized mutual information, were selected to design the fitness functions in MODEMDR. The characteristics of multiobjective optimization enable MODEMDR to use multiple measures to efficiently and synchronously detect significant gene–gene interactions within a reasonable time frame. Epistatic models with and without marginal effects under various parameter settings (heritability and minor allele frequencies) were used to assess existing methods by comparing the detection success rates of gene–gene interactions. The results of the simulation datasets show that MODEMDR is superior to existing methods. Moreover, a large dataset obtained from the Wellcome Trust Case Control Consortium was used to assess MODEMDR. MODEMDR exhibited efficiency in identifying significant gene–gene interactions in genome-wide association studies.
机译:通过基于单核苷酸多态性(SNP)的多维度降维(MDR)的权变表测量,确定了疾病相关基因(基因与基因之间的相互作用)中的上位性。大多数基于MDR的方法都使用单一列联表法来检测基因与基因之间的相互作用。但是,某些基因与基因的相互作用可能需要通过多重列联表测量来识别。在这项研究中,提出了一种多目标差分进化方法(称为MODEMDR),以合并基于MDR的各种列联表度量以检测重要的基因-基因相互作用。选择两种列联表度量,即正确的分类率和标准化的互信息,以设计MODEMDR中的适应度函数。多目标优化的特征使MODEMDR能够在合理的时间范围内使用多种措施来有效且同步地检测重要的基因-基因相互作用。通过比较基因-基因相互作用的检测成功率,在各种参数设置(遗传性和次要等位基因频率)下具有或没有边际效应的上位性模型用于评估现有方法。仿真数据集的结果表明,MODEMDR优于现有方法。此外,从惠康信托案例控制协会获得的大型数据集用于评估MODEMDR。在全基因组关联研究中,MODEMDR可以有效地识别重要的基因与基因之间的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号