首页> 美国卫生研究院文献>Scientific Reports >Tweaking the Electronic and Optical Properties of α-MoO3 by Sulphur and Selenium Doping – a Density Functional Theory Study
【2h】

Tweaking the Electronic and Optical Properties of α-MoO3 by Sulphur and Selenium Doping – a Density Functional Theory Study

机译:硫和硒掺杂调节α-MoO3的电子和光学性质-密度泛函理论研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

First-principles calculations were carried out to understand how anionic isovalent-atom doping affects the electronic structures and optical properties of α-MoO3. The effects of the sulphur and selenium doping at the three unique oxygen sites (Ot, Oa, and Ot) of α-MoO3 were examined. We found that the valence p orbitals of Sulphur/Selenium dopant atoms give rise to impurity bands above the valence band maximum in the band structure of α-MoO3. The number of impurity bands in the doped material depends on the specific doping sites and the local chemical environment of the dopants in MoO3. The impurity bands give rise to the enhanced optical absorptions of the S- and Se-doped MoO3 in the visible and infrared regions. At low local doping concentration, the effects of the dopant sites on the electronic structure of the material are additive, so increasing the doping concentration will enhance the optical absorption properties of the material in the visible and infrared regions. Further increasing the doping concentration will result in a larger gap between the maximum edge of impurity bands and the conduction band minimum, and will undermine the optical absorption in the visible and infrared region. Such effects are caused by the local geometry change at the high local doping concentration with the dopants displaced from the original O sites, so the resulting impurity bands are no long the superpositions of the impurity bands of each individual on-site dopant atom. Switching from S-doping to Se-doping decreases the gap between the maximum edge of the impurity bands and conduction band minimum, and leads to the optical absorption edge red-shifting further into the visible and infrared regions.
机译:进行了第一性原理计算,以了解阴离子等价原子掺杂如何影响α-MoO3的电子结构和光学性质。研究了α-MoO3的三个独特氧位(Ot,Oa和Ot)处硫和硒掺杂的影响。我们发现,硫/硒掺杂原子的价p轨道在α-MoO3的能带结构中产生了高于价带最大值的杂质带。掺杂材料中杂质带的数量取决于MoO3中特定的掺杂位点和掺杂剂的局部化学环境。杂质带在可见光和红外区域提高了S和Se掺杂的MoO3的光学吸收。在低局部掺杂浓度下,掺杂剂位点对材料的电子结构的影响是累加的,因此提高掺杂浓度将增强材料在可见光和红外区域的光吸收性能。进一步提高掺杂浓度将导致杂质带的最大边缘和导带最小的间隙更大,并且会破坏可见光和红外光区域的光吸收。这种影响是由于在高局部掺杂浓度下掺杂物从原始O位置移位而引起的局部几何形状变化所致,因此产生的杂质带不再是每个单独的现场掺杂原子的杂质带的叠加。从S掺杂转换为Se掺杂会减小杂质带的最大边缘和导带最小值之间的间隙,并导致光吸收边缘进一步红移到可见区和红外区。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号