首页> 美国卫生研究院文献>Scientific Reports >Network controllability analysis of intracellular signalling reveals viruses are actively controlling molecular systems
【2h】

Network controllability analysis of intracellular signalling reveals viruses are actively controlling molecular systems

机译:细胞内信号传导的网络可控性分析显示病毒正在积极控制分子系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years control theory has been applied to biological systems with the aim of identifying the minimum set of molecular interactions that can drive the network to a required state. However, in an intra-cellular network it is unclear how control can be achieved in practice. To address this limitation we use viral infection, specifically human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV), as a paradigm to model control of an infected cell. Using a large human signalling network comprised of over 6000 human proteins and more than 34000 directed interactions, we compared two states: normal/uninfected and infected. Our network controllability analysis demonstrates how a virus efficiently brings the dynamically organised host system into its control by mostly targeting existing critical control nodes, requiring fewer nodes than in the uninfected network. The lower number of control nodes is presumably to optimise exploitation of specific sub-systems needed for virus replication and/or involved in the host response to infection. Viral infection of the human system also permits discrimination between available network-control models, which demonstrates that the minimum dominating set (MDS) method better accounts for how the biological information and signals are organised during infection by identifying most viral proteins as critical driver nodes compared to the maximum matching (MM) method. Furthermore, the host driver nodes identified by MDS are distributed throughout the pathways enabling effective control of the cell via the high ‘control centrality’ of the viral and targeted host nodes. Our results demonstrate that control theory gives a more complete and dynamic understanding of virus exploitation of the host system when compared with previous analyses limited to static single-state networks.
机译:近年来,控制理论已应用于生物系统,目的是确定可将网络驱动至所需状态的最小分子相互作用集。然而,在细胞内网络中,目前尚不清楚如何实现控制。为了解决此限制,我们使用病毒感染,特别是1型人类免疫缺陷病毒(HIV-1)和丙型肝炎病毒(HCV),作为对感染细胞进行控制的模型。我们使用由6000多种人类蛋白和34000多种定向相互作用组成的大型人类信号网络,比较了两种状态:正常/未感染和感染。我们的网络可控性分析演示了病毒如何通过主要针对现有的关键控制节点来有效地将动态组织的主机系统置于其控制中,与未感染网络相比,所需的节点数更少。控制节点的数量减少可能是为了优化病毒复制所需的特定子系统的开发和/或参与宿主对感染的响应。人体系统的病毒感染还允许在可用的网络控制模型之间进行区分,这证明了最小支配集(MDS)方法通过将大多数病毒蛋白识别为关键的驱动程序节点,从而更好地说明了感染期间如何组织生物学信息和信号最大匹配(MM)方法。此外,由MDS识别的主机驱动程序节点分布在整个路径中,可通过病毒和目标主机节点的高度“控制中心”有效地控制细胞。我们的结果表明,与以前的仅限于静态单状态网络的分析相比,控制理论对主机系统的病毒利用提供了更完整和动态的了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号