首页> 美国卫生研究院文献>Scientific Reports >All-atom simulations and free-energy calculations of coiled-coil peptides with lipid bilayers: binding strength structural transition and effect on lipid dynamics
【2h】

All-atom simulations and free-energy calculations of coiled-coil peptides with lipid bilayers: binding strength structural transition and effect on lipid dynamics

机译:具有脂双层的卷曲螺旋肽的全原子模拟和自由能计算:结合强度结构转变和对脂质动力学的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Peptides E and K, which are synthetic coiled-coil peptides for membrane fusion, were simulated with lipid bilayers composed of lipids and cholesterols at different ratios using all-atom models. We first calculated free energies of binding from umbrella sampling simulations, showing that both E and K peptides tend to adsorb onto the bilayer surface, which occurs more strongly in the bilayer composed of smaller lipid headgroups. Then, unrestrained simulations show that K peptides more deeply insert into the bilayer with partially retaining the helical structure, while E peptides less insert and predominantly become random coils, indicating the structural transition from helices to random coils, in quantitative agreement with experiments. This is because K peptides electrostatically interact with lipid phosphates, as well as because hydrocarbons of lysines of K peptide are longer than those of glutamic acids of E peptide and thus form stronger hydrophobic interactions with lipid tails. This deeper insertion of K peptide increases the bilayer dynamics and a vacancy below the peptide, leading to the rearrangement of smaller lipids. These findings help explain the experimentally observed or proposed differences in the insertion depth, binding strength, and structural transition of E and K peptides, and support the snorkeling effect.
机译:使用全原子模型,以不同比例由脂质和胆固醇组成的脂质双层模拟肽E和K,它们是用于膜融合的合成卷曲螺旋肽。我们首先从伞式采样模拟中计算了结合的自由能,表明E和K肽都倾向于吸附在双层表面上,这种情况在由较小脂质头基组成的双层中更强烈地发生。然后,不受限制的模拟表明,K肽更深地插入双层中,并部分保留了螺旋结构,而E肽的插入较少,并且主要变成了无规卷曲,表明从螺旋结构到无规卷曲的结构转变与实验定量吻合。这是因为K肽与脂质磷酸酯静电相互作用,以及因为K肽的赖氨酸的烃长于E肽的谷氨酸的烃,因此与脂质尾巴形成更强的疏水相互作用。 K肽的这种更深的插入会增加双层动力学,并降低该肽下方的空位,从而导致较小脂质的重排。这些发现有助于解释实验观察到的或提议的E和K肽插入深度,结合强度以及结构转变的差异,并支持浮潜效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号