首页> 美国卫生研究院文献>Nature Communications >Generic decoding of seen and imagined objects using hierarchical visual features
【2h】

Generic decoding of seen and imagined objects using hierarchical visual features

机译:使用分层视觉功能对可见物体和想象物体进行通用解码

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Object recognition is a key function in both human and machine vision. While brain decoding of seen and imagined objects has been achieved, the prediction is limited to training examples. We present a decoding approach for arbitrary objects using the machine vision principle that an object category is represented by a set of features rendered invariant through hierarchical processing. We show that visual features, including those derived from a deep convolutional neural network, can be predicted from fMRI patterns, and that greater accuracy is achieved for low-/high-level features with lower-/higher-level visual areas, respectively. Predicted features are used to identify seen/imagined object categories (extending beyond decoder training) from a set of computed features for numerous object images. Furthermore, decoding of imagined objects reveals progressive recruitment of higher-to-lower visual representations. Our results demonstrate a homology between human and machine vision and its utility for brain-based information retrieval.
机译:对象识别是人机视觉中的关键功能。虽然已经实现了对可见物体和想象物体的大脑解码,但预测仅限于训练示例。我们提出了一种使用机器视觉原理对任意对象进行解码的方法,即对象类别由通过分层处理呈现不变的一组特征表示。我们显示视觉功能,包括从深层卷积神经网络派生的视觉功能,可以从fMRI模式进行预测,对于具有较低/较高级别视觉区域的低/高级功能,可以分别实现更高的准确性。预测特征用于从众多物体图像的一组计算特征中识别可见/想象的物体类别(超出解码器训练范围)。此外,对想象对象的解码揭示了从高到低的视觉表示的渐进式募集。我们的结果证明了人类视觉和机器视觉之间的同源性及其在基于脑的信息检索中的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号