首页> 美国卫生研究院文献>Proceedings. Mathematical Physical and Engineering Sciences >Modelling modal gating of ion channels with hierarchical Markov models
【2h】

Modelling modal gating of ion channels with hierarchical Markov models

机译:使用分层马尔可夫模型对离子通道的模态门控进行建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many ion channels spontaneously switch between different levels of activity. Although this behaviour known as modal gating has been observed for a long time it is currently not well understood. Despite the fact that appropriately representing activity changes is essential for accurately capturing time course data from ion channels, systematic approaches for modelling modal gating are currently not available. In this paper, we develop a modular approach for building such a model in an iterative process. First, stochastic switching between modes and stochastic opening and closing within modes are represented in separate aggregated Markov models. Second, the continuous-time hierarchical Markov model, a new modelling framework proposed here, then enables us to combine these components so that in the integrated model both mode switching as well as the kinetics within modes are appropriately represented. A mathematical analysis reveals that the behaviour of the hierarchical Markov model naturally depends on the properties of its components. We also demonstrate how a hierarchical Markov model can be parametrized using experimental data and show that it provides a better representation than a previous model of the same dataset. Because evidence is increasing that modal gating reflects underlying molecular properties of the channel protein, it is likely that biophysical processes are better captured by our new approach than in earlier models.
机译:许多离子通道自发地在不同水平的活性之间切换。尽管这种行为被称为模态门控已被观察了很长时间,但目前尚不十分清楚。尽管正确表示活性变化对于从离子通道准确捕获时程数据至关重要,但目前尚无用于模拟模态门控的系统方法。在本文中,我们开发了一种用于在迭代过程中构建这种模型的模块化方法。首先,在单独的聚合马尔可夫模型中表示模式之间的随机切换以及模式内的随机打开和关闭。其次,连续时间分层马尔可夫模型(此处提出的新建模框架)使我们能够组合这些组件,以便在集成模型中适当地表示模式切换以及模式内的动力学。数学分析表明,层次马尔可夫模型的行为自然取决于其组件的属性。我们还演示了如何使用实验数据对分层的马尔可夫模型进行参数化,并表明它比相同数据集的先前模型提供了更好的表示形式。由于越来越多的证据表明,模态门控反应了通道蛋白的潜在分子特性,因此与早期模型相比,我们的新方法可能更好地捕获了生物物理过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号