首页> 美国卫生研究院文献>Nature Communications >Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals
【2h】

Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals

机译:统计学习超越了d带模型提供了过渡金属上吸附物的热化学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The rational design of heterogeneous catalysts relies on the efficient survey of mechanisms by density functional theory (DFT). However, massive reaction networks cannot be sampled effectively as they grow exponentially with the size of reactants. Here we present a statistical principal component analysis and regression applied to the DFT thermochemical data of 71 C1–C2 species on 12 close-packed metal surfaces. Adsorption is controlled by covalent (d-band center) and ionic terms (reduction potential), modulated by conjugation and conformational contributions. All formation energies can be reproduced from only three key intermediates (predictors) calculated with DFT. The results agree with accurate experimental measurements having error bars comparable to those of DFT. The procedure can be extended to single-atom and near-surface alloys reducing the number of explicit DFT calculation needed by a factor of 20, thus paving the way for a rapid and accurate survey of whole reaction networks on multimetallic surfaces.
机译:多相催化剂的合理设计依赖于通过密度泛函理论(DFT)对机理的有效研究。但是,大规模的反应网络无法有效采样,因为它们会随着反应物的大小呈指数增长。在这里,我们介绍了统计主成分分析和回归应用于71 C <数学xmlns:mml =“ http://www.w3.org/1998/Math/MathML” id =“ M2”> 1 –C 2 物种对12个近距离填充金属表面。吸附受共价控制( d 波段中心)和离子项(还原电位),由共轭和构象贡献调节。所有地层能量只能从DFT计算出的三个关键中间体(预测变量)中复制出来。结果与准确的实验测量结果相符,其误差棒可与DFT媲美。该程序可以扩展到单原子和近表面合金,从而将所需的显式DFT计算数量减少20倍,从而为在多金属表面上快速,准确地调查整个反应网络铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号