首页> 美国卫生研究院文献>Journal of Computational Biology >Finding Alternative Expression Quantitative Trait Loci by Exploring Sparse Model Space
【2h】

Finding Alternative Expression Quantitative Trait Loci by Exploring Sparse Model Space

机译:通过探索稀疏模型空间寻找替代表达定量性状位点

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Sparse modeling, a feature selection method widely used in the machine-learning community, has been recently applied to identify associations in genetic studies including expression quantitative trait locus (eQTL) mapping. These genetic studies usually involve high dimensional data where the number of features is much larger than the number of samples. The high dimensionality of genetic data introduces a problem that there exist multiple solutions for optimizing a sparse model. In such situations, a single optimization result provides only an incomplete view of the data and lacks power to find alternative features associated with the same trait. In this article, we propose a novel method aimed to detecting alternative eQTLs where two genetic variants have alternative relationships regarding their associations with the expression of a particular gene. Our method accomplishes this goal by exploring multiple solutions sampled from the solution space. We proved our method theoretically and demonstrated its usage on simulated data. We then applied our method to a real eQTL data and identified a set of alternative eQTLs with potential biological insights. Additionally, these alternative eQTLs implicate a network view of understanding gene regulation.
机译:>稀疏建模是一种在机器学习社区中广泛使用的特征选择方法,最近已用于识别遗传学研究中的关联,包括表达定量性状基因座(eQTL)映射。这些遗传研究通常涉及高维数据,其中特征的数量远大于样本的数量。遗传数据的高维性带来了一个问题,即存在多种用于优化稀疏模型的解决方案。在这种情况下,单个优化结果只能提供不完整的数据视图,并且无法找到与同一性状相关的替代特征。在本文中,我们提出了一种旨在检测替代eQTL的新颖方法,其中两个遗传变体在其与特定基因表达的关联方面具有替代关系。我们的方法通过探索从解决方案空间采样的多个解决方案来实现此目标。我们从理论上证明了我们的方法,并在模拟数据上证明了其用法。然后,我们将我们的方法应用于实际的eQTL数据,并确定了一组具有潜在生物学见解的替代eQTL。此外,这些替代性eQTL暗示了对基因调控的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号